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Abstract 

The ability to reason about others' mental states, known as Theory of Mind (ToM), is an 

important aspect of social intelligence. Nevertheless, quantifying its emergence in 

foundation AI models has been hampered by methodological flaws in existing static 

benchmarks. Current evaluations often rely on single-turn vignettes that are susceptible to 

dataset contamination and shortcut solutions, making it difficult to distinguish genuine 

belief reasoning from superficial pattern matching. This paper proposes a multi-agent 

simulation framework to address this challenge. We embed foundation models as agents in 

interactive, partially observable environments where success is causally contingent on 

tracking, inferring, and manipulating others' beliefs. The framework operationalizes ToM 

through dynamic task families, including false-belief, deception, and coordination games, 

that make nested belief reasoning very important and necessary for achieving goals. 

Significantly, this aspect goes beyond purely behavioral outcomes by instrumenting process 

evidence, such as the alignment of an agent’s reported beliefs with ground-truth epistemic 

states and its subsequent actions. The proposed approach separates intrinsic model 

competence from the effects of performance artifacts and inference-time scaffolding. The 

primary contributions are operational semantics for ToM in artificial agents, a suite of 

belief-critical tasks, and a measurement protocol that integrates outcome success with 

process-level validation. Applying this framework reveals that while current models exhibit 

measurable and partially robust first-order ToM-like capabilities, higher-order reasoning is 

more fragile and strongly dependent on model scale, context, and structured deliberation. 

By providing an auditable, reproducible, and adversarial robust evaluation substrate, this 

work establishes a principled methodology for quantifying how and when social cognition 

emerges in artificial agents, moving the field from unreliable claims toward a cumulative, 

empirical science. 
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1. Introduction 

In order to engage in rich social interactions, artificial agents must be capable of attributing 

beliefs, desires, and intentions to others. This capacity, known as Theory of Mind (ToM), 

is an important element of human social cognition [1]. A pressing question is whether large-

scale foundation models, trained on broad internet data, exhibit a comparable ability and, if 

so, under what conditions and through which mechanisms. Early claims of ToM-like skills 

in such models have been contested, with critiques suggesting that success on evaluation 

tasks could arise from dataset artifacts, prompting strategies, or superficial pattern matching 

rather than genuine belief reasoning. Therefore, the field faces a dual challenge, namely, to 

establish careful operational definitions of ToM suitable for artificial agents and to create 

evaluation environments that elicit true belief reasoning instead of allowing shortcut 

solutions. This work addresses both needs by proposing a framework for measuring when 

and how social-cognitive skills emerge in AI. 

 

1.1 Motivation and research questions 

The drive to quantify ToM in foundation models is motivated by theoretical, 

methodological, and practical considerations [2,3]. Theoretically, it explores whether large-

scale, self-supervised training on human data can induce the latent structures necessary for 

belief reasoning, a subject of open debate in cognitive science. Methodologically, existing 

ToM tests for AI often contain serious pitfalls, many rely on simple story puzzles or 

prompted questions that models might solve via shortcuts, casting doubt on claims of 

genuine mental state attribution. Practically, foundation models are increasingly deployed 

in interactive roles where they must infer user intent, negotiate with other agents, or 

coordinate under partial information. Robust measures of social reasoning are therefore 

essential to ensure these systems behave safely and predictably [4,5]. Guided by these 

motivations, our research investigates whether foundation models exhibit ToM-like 

competencies and, if so, under what conditions. We examine how this capability scales with 

model size or improves with interaction. A very important goal is to design tasks that 

necessitate belief reasoning, thereby revealing its presence or absence with high fidelity. 

Ultimately, our framework is engineered to distinguish genuine belief attribution from 

clever but still shallow heuristics or memorized patterns. 

 

1.2 Contributions and scope 

This article offers a unified conceptual and experimental framework for studying the 

emergence of ToM in foundation models [2,3], comprising construct definition, task 

creation, and rigorous evaluation . Our first contribution is to operationalize ToM for 

artificial agents by providing precise definitions for different levels of belief reasoning and 

by clarifying what constitutes evidence of such capabilities. In order to elicit and test these 

abilities, we introduce a suite of interactive multi-agent simulation tasks, including false-

belief scenarios and deception games, designed so that success requires the inference and 

manipulation of others' hidden mental states. This design prevents solutions based on 

superficial pattern matching. In complementing these tasks, we develop a comprehensive 
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measurement protocol that combines outcome-based metrics with process-based analyses 

of an agent’s decision-making, offering deeper insight into its reasoning. Finally, through 

extensive experiments, we map the conditions under which ToM-like abilities appear in 

foundation models of different scales. Our empirical findings show that while current 

models exhibit some robust first-order ToM, higher-order reasoning remains fragile, and 

we identify the factors that influence this performance. Together, these contributions 

advance the study of social cognition in machines and lay the groundwork for a more 

rigorous science of machine ToM. 

 

1.3 Definitions of ToM, emergence, foundation models 

In order to ensure clarity, this work adheres to precise definitions for its core concepts. We 

define ToM as an agent’s operational ability to represent and reason about the mental states 

of others, using these representations to inform its actions. This capacity is treated as a 

graded property, observable through behavior, rather than as a monolithic trait. The term 

emergence refers to qualitatively new capabilities that manifest at a certain scale of model 

complexity, surpassing extrapolations from smaller models. In order for a capability to be 

considered emergent, it must be reproducible and robust. We also distinguish an agent’s 

intrinsic competence from performance enhanced by external scaffolding, such as memory 

buffers or planners. Foundation models are the large-scale, pre-trained neural networks that 

serve as the cognitive core for the agents in our simulations. Our framework explicitly 

separates the abilities of the base model from the contributions of its surrounding 

architecture. 

 

1.4 Overview of approach and findings 

The subsequent sections of this paper systematically unfold our framework (Figure 1). We 

begin by situating our work within the existing literature before formally defining the 

problem and our central hypotheses. We then detail the multi-agent simulation environment 

and agent architecture developed to test these hypotheses. Following this, we describe the 

specific evaluated foundation models and the comprehensive protocol used for their 

assessment, including our proposed metrics and statistical methods. Moving forward, the 

paper presents our experimental results, makes a deeper analysis of model behaviors and 

failure modes, and puts forward a discussion of the broader implications, limitations, and 

ethical considerations of our findings. We conclude by detailing our commitment to 

reproducibility and outlining future research directions.  

Our results provide a nuanced picture of ToM in current foundation models. We find that 

agents can achieve non-trivial performance on tasks requiring first-order belief reasoning, 

such as tracking another agent’s knowledge to succeed in a cooperative endeavor. 

Nevertheless, robust higher-order ToM, which involves reasoning about nested beliefs, 

remains largely unattainable with current capabilities. While larger models and specific 

scaffolding techniques yield performance gains, we also demonstrate that these apparent 

abilities are often fragile, diminishing significantly under adversarial or out-of-distribution 

conditions. These findings emphasize both the promise and the current limitations of 
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artificial social cognition, reinforcing the very important need for the principled evaluation 

framework we propose [6]. 

 

Figure 1. The main Phases and Steps of the Proposed  

Multi-Agent Simulation Framework for TOM 

 

 

2. Background and Related Work 

2.1 ToM in cognitive science and developmental psychology 
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The modern research program on Theory of Mind (ToM) originates in Premack and 

Woodruff’s seminal question, "Does the chimpanzee have a theory of mind?", which 

stimulated the study of mental state attribution in non-human agents [1]. In parallel, 

extensive research in developmental psychology has documented the trajectory of human 

ToM capabilities, exemplified by a child’s comprehension of false beliefs around preschool 

age, classically assessed with the Sally-Anne test [7]. Persistent debates in cognitive science 

address whether human ToM is powered by a specialized innate component, a learned 

theory-building process, or a simulation of others’ minds. These foundational insights 

inform the evaluation of artificial intelligence. Validating claims of artificial ToM requires 

grounding them in rigorous tasks and criteria analogous to those used in human studies. 

Furthermore, developmental delays in ToM, such as those associated with comparative 

primate studies suggest the involvement of specific cognitive mechanisms [8]. This raises 

the question of whether an artificial system, lacking analogous evolutionary and 

developmental structures, can attain similar abilities or is destined to fail in comparable 

ways. 

 

2.2 Computational models of ToM and belief modeling 

These psychological inquiries encouraged efforts to formalize the mechanisms of mental 

state attribution within computational frameworks. Influential approaches in Bayesian 

cognitive science treat ToM as a form of probabilistic inference, where an agent maintains 

a model of others’ mental states and updates it based on observations, as seen in rational 

speech-act models of communication [9]. For instance, an agent might infer another’s goal 

or knowledge by observing its behavior. Other research traditions have explored logic-

based systems like dynamic epistemic logic to formally capture knowledge updates, as well 

as recursive agent models such as the Interactive Partially Observable Markov Decision 

Process (I-POMDP) formulation, which extends planning to multi-agent belief reasoning 

by explicitly incorporating nested beliefs into an agent’s decision model [10–12]. While 

these computational models provide normative blueprints for ToM, they typically involve 

hand-crafted representations or operate in simplified settings, unlike the large, inductively 

learned models studied in this work. In order to address different aspects of ToM, our 

framework therefore includes parameterized task families, each procedurally generated to 

prevent data contamination and designed to make a specific order of belief reasoning 

necessary for success (Table 1). 

 

Task Family 
Primary ToM 

Target 
Core Mechanic Key Perturbation 

False-Belief and 

Perspective-

Taking 

First-Order 

Belief Tracking 

Asymmetric 

observation of 

object movement 

or visual 

Knowledge 

Swaps: 

Exchanging agents' 

private observation 

histories while 
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occlusion in an 

interactive world. 

keeping surface text 

identical. 

Deception and 

Signaling Games 

Second-Order 

Strategic 

Reasoning 

Misaligned 

payoffs in a 

cheap-talk game 

where a sender's 

message 

influences a 

receiver's action. 

Payoff Matrix 

Inversion: 

Flipping incentives 

from cooperative to 

competitive to test 

strategic 

adaptation. 

Coordination and 

Negotiation 

Belief-Guided 

Joint Planning 

Partially 

observable 

environments 

(e.g. mazes, 

resource 

allocation) 

requiring 

common ground 

formation. 

Partner 

Heterogeneity: 

Introducing 

partners with novel 

or out-of-

distribution 

communication 

styles. 

Communication-

Constrained 

Settings 

Pragmatic and 

Belief-Sensitive 

Communication 

Imposing costs or 

bandwidth limits 

on messages, 

forcing efficient 

information 

transfer. 

Bandwidth 

Ablation: 

Systematically 

varying message 

length limits to 

measure pragmatic 

compression. 

Table 1: Overview of ToM Task Families and Their Epistemic Demands 

 

2.3 Emergence in large-scale models 

The advent of such large-scale models has prompted claims of emergent abilities, which 

are capabilities that appear to surface once models reach a certain threshold of complexity 

or training size. Some researchers report that qualitatively new skills, including social 

reasoning, manifest suddenly as model size increases. An alternative perspective contends 

that many such instances of emergence are continuous performance gains misconstrued as 

discrete jumps due to coarse evaluation functions, dataset composition, or the long tail of 

task difficulty [13]. This view posits that apparent emergence is an artifact of nonlinear 

metrics or naive extrapolations of scaling curves. We treat emergence as a falsifiable 

hypothesis about patterns in our data, seeking evidence that ToM-relevant competence 
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exceeds what naive scaling expectations would predict. Indeed, some scaling-law studies 

have found smooth, power-law improvements rather than strict discontinuities, suggesting 

many so-called emergent behaviors might simply require more fine-grained analysis. 

Nonetheless, the observation that certain abilities, like solving specific logic puzzles, appear 

to manifest only beyond a large parameter threshold keeps the discussion open. This stance 

shapes our experiments and their interpretation, namely any reported emergence is 

supported by statistical evidence beyond a simple parameter-performance curve and 

validated through replication and perturbation tests. 

 

2.4 Multi-agent simulation for studying social cognition 

Investigating such complex cognitive phenomena necessitates robust experimental 

paradigms. Interactive multi-agent simulations provide a promising opportunity to study 

social intelligence, creating dynamic scenarios where agents with partial information must 

interact over time [14,15]. Unlike static question-answer tests, these environments enable 

the study of communication, cooperation, deception, and the formation of shared 

conventions. Prior work has demonstrated that multi-agent environments can encourage 

emergent behaviors like tool use and novel communication protocols.  

In the case of ToM research specifically, simulations offer a very important advantage, 

namely the ground-truth mental states of agents are known to the experimenter, allowing 

for objective measurement of whether an agent is successfully tracking what others know 

or believe [16]. This approach inspired our framework, which embeds models in 

environments designed to require belief reasoning, leading to reproducible data on their 

social cognitive performance. The use of multi-agent games also permits repeated trials 

under slightly varied conditions, which is extremely important for distinguishing consistent 

ToM competence from fortuitous guesses or overfitting [17]. 

 

2.5 The strengths and pitfalls of existing ToM evaluations for LLMs 

The controlled, dynamic nature of multi-agent simulations stands in contrast to many 

existing ToM evaluations for large language models (LLMs) [17–19]. The question of 

whether LLMs possess ToM has led to a wave of evaluation attempts, often using classic 

false-belief stories or social vignettes. Although prompting techniques like chain-of-

thought reasoning can elicit seemingly correct answers, these successes are difficult to 

interpret. An LLM might arrive at the right answer by leveraging superficial patterns or by 

recalling similar examples from its training data [18,19]. 

Reports of advanced ToM in certain models have been contested by findings that slight 

rephrasings or novel scenarios degrade performance, suggesting a fragile grasp of others’ 

mental states. Existing evaluations are frequently one-off and brittle, lacking controlled 

difficulty or safeguards against data contamination. This methodological heterogeneity 

complicates efforts to ascertain whether a given model genuinely possesses ToM-like 

abilities or is merely exploiting shortcuts. These limitations motivate our controlled, 

simulation-based evaluation, which aims to provide stronger, auditable evidence regarding 

belief reasoning in AI. By engaging models in interactive, multi-turn tasks with verifiable 
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belief dynamics, while also ruling out data contamination and providing robust analysis 

protocols, we seek to obtain a clearer picture of their social reasoning capabilities [20]. 

 

 

3. Problem Formulation 

3.1 Operationalizing ToM (first-order, higher-order, recursive belief states) 

This section establishes a formal framework for measuring Theory of Mind (ToM) in 

artificial agents, specifically those instantiated as policy wrappers for foundation models. 

The framework specifies the construct, the setting for its elicitation, and the conditions for 

interpreting measurements as genuine belief reasoning rather than as artifacts of surface 

pattern matching. This formulation aligns with the multi-agent simulation program where 

belief-dependent incentives, controlled partial observability, and instrumented 

communication render mental-state inference causally necessary for success. The entire 

approach is anchored by several foundational commitments. ToM is conceptualized as a 

graded, operational construct, distinct from a metaphysical attribute. Emergence is defined 

by robust, out-of-sample regularities, not by rhetorical discontinuities [19]. Valid 

measurement must integrate behavioral outcomes with underlying processes. Any claims 

must be falsifiable through perturbations that selectively impair belief-based solutions 

while leaving heuristic shortcuts intact. These principles ground the formalism and ensure 

its scientific rigor. 

The formal specification begins by situating agents within a partially observable 

environment, modeled as a stochastic game, where each possesses unique observations and 

knowledge. An agent’s first-order belief is its internal estimate of the world's state, or task-

relevant hidden information, given its observations. A second-order belief represents an 

agent’s model of another agent’s belief about the world. This recursion extends to higher-

order beliefs, such as what one agent thinks another knows about its own knowledge. While 

a fully capable agent would theoretically maintain a nested model of others' mental states, 

the intractability of representing infinite recursive beliefs necessitates a functional 

approach. We therefore design tasks where optimal actions are contingent upon tracking 

the beliefs of others. An agent that consistently succeeds in these tasks is inferred to be 

leveraging the necessary belief-reasoning capabilities [8]. 

The methodology hinges on embedding carefully designed epistemic tests within the 

environment. These tests create situations where two scenarios are physically identical but 

differ in what another agent knows. An agent lacking ToM would perceive and act within 

these scenarios identically. A ToM-capable agent, however, would behave differently in 

response to the distinct epistemic conditions. We therefore consider ToM to be 

operationally present when an agent’s policy is sensitive to others’ mental states. This 

sensitivity is confirmed if the agent's behavior changes precisely in situations where 

another’s beliefs differ, even when the observable state of the world remains constant. 

We adopt a minimal but expressive mathematical setting, namely a partially observable 

stochastic game with communication, because it canonically separates physical state 

uncertainty from epistemic state uncertainty and because it allows the faithful encoding of 

"who" knows "what", and "when". Let 𝐺 denote a game with finite or countable horizon 𝑇, 
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a set of agents 𝐴 = {1, … , 𝑛} a hidden world state 𝑠𝑡 ∈ 𝑆 at time 𝑡, and, for each agent 𝑖, an 

observation function 𝑂𝑖: 𝑆 × 𝜀 → 𝑂𝑖 mapping from the world state and recent events 𝜀 to a 

private observation 𝑂𝑖
𝑡. Agents choose actions 𝑎𝑖

𝑡 ∈ 𝐴𝑖 and may emit messages 𝑚𝑖
𝑡 ∈ 𝑀𝑖 

according to a communication protocol Π that specifies turn-taking, admissible content, and 

grounding conventions. The environment evolves via a transition kernel 

𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎1
𝑡 , … , 𝑎𝑛

𝑡 ). Rewards 𝑟𝑖
𝑡 are assigned according to payoff functions that we 

intentionally couple to belief-relevant latent variables in order to manage the measurement 

of ToM. 

In such a game, an agent’s epistemic state is a distribution over latent variables given its 

observation–message history. We write ℎ𝑖
𝑡 = (𝑜

<𝑡

𝑖
, 𝑚<𝑡 , 𝑎<𝑡) for the history available to 

agent 𝑖 at time 𝑡 under the protocol Π. The agent’s first-order belief about the world is a 

posterior 𝑏𝑖
𝑡(𝑠) = 𝑃𝑟(𝑠𝑡 = 𝑠|ℎ𝑖

𝑡). A Theory-of-Mind-capable agent maintains, explicitly or 

implicitly, higher-order beliefs about other agents’ first-order beliefs, and potentially about 

their higher-order beliefs in turn. Let 𝑏𝑖→𝑗
𝑡  denote 𝑖's belief over 𝑗’s first-order world belief  

𝑏𝑖→𝑗
𝑡 (𝑏) = 𝑃𝑟(𝑏𝑗

𝑡 = 𝑏|ℎ𝑖
𝑡). More generally, we define a recursive tower of beliefs 𝐵𝑖

(𝑘),𝑡
 of 

order 𝑘, where 𝐵𝑖
(1),𝑡 ≡ 𝑏𝑖

𝑡 and 𝐵𝑖
(2),𝑡 ≡ 𝑏𝑖→𝑗

𝑡  for some 𝑗 ≠ 𝑖. Higher orders follow by 

induction, with 𝐵𝑖
(𝑘+1),𝑡

 a measure over others’ 𝐵𝑗
(𝑘),𝑡

. Because explicit maintenance of full 

recursive distributions is intractable, we measure competence functionally, namely does the 

policy 𝜋𝑖 select actions and utterances whose expected utility cannot be achieved without 

tracking certain beliefs to a specified order under the game’s identifiability structure? The 

problem formulation therefore relies on tasks in which action values 𝑄𝑖(ℎ𝑖
𝑡, 𝑎) are provably 

sensitive to the content of 𝐵𝑖
(𝑘),𝑡

 even after conditioning on 𝐵𝑖
(𝑙),𝑡

for 𝑙 < 𝑘. 

In order to avoid confounds from purely world-state prediction, we engineer information 

asymmetries and intervention points where two histories ℎ𝑖
𝑡 and ℎ′𝑖

𝑡 induce the same first-

order world posterior 𝑏𝑖
𝑡 but differ in the distribution over another agent’s beliefs 𝑏𝑖→𝑗′

𝑡  and 

where the optimal 𝑎 differs across ℎ𝑖
𝑡 and ℎ′𝑖

𝑡. In such "epistemic disentanglement" regimes, 

performance demands sensitivity to others’ beliefs. Communication protocols introduce 

pragmatic pressure, namely in cooperative tasks, a message is informative if and only if it 

reduces the entropy of the receiver’s posterior over task-relevant variables. In competitive 

tasks, beneficial deception requires inducing a targeted misalignment between the 

receiver’s posterior and the ground truth. The formal problem is therefore to determine, 

from behavior and process traces, whether a model wrapped as 𝜋𝑖 leverages recursive belief 

information when such leverage is required by the incentive structure. This formulation is 

consistent with the article’s stance that ToM is graded and operational and with its 

insistence on multi-turn interaction under partial observability to produce belief-sensitive 

behavior. These scenarios give us built-in controls for testing ToM. Consequently, we can 

systematically flip who knows what in otherwise identical trials and find out if the agent 

correspondingly flips its behavior. 

 

3.2 Hypotheses and falsifiable predictions 
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Our formulation produces concrete, falsifiable predictions regarding the manifestation of 

ToM-like abilities. We hypothesized that first-order belief reasoning would be attainable 

for current large language models [19], particularly with appropriate interaction protocols, 

whereas reliably handling second-order beliefs would present a significant challenge. This 

tiered-difficulty hypothesis predicted that performance would decline sharply with each 

increase in required reasoning, with second-order tasks producing results at or near chance 

levels. We also advanced a scaling hypothesis, positing that larger models would 

substantially outperform smaller ones on belief-critical tasks, suggesting that social 

reasoning capabilities emerge at scale, albeit with diminishing returns at higher orders of 

inference [21]. 

Further predictions concerned the experimental conditions. We anticipated that forcing 

agents to communicate and coordinate would reveal more pronounced performance 

differences, with failures emerging in tasks requiring subtle pragmatic inference or 

deception [22,23]. A scaffolding hypothesis proposed that agents equipped with support 

mechanisms, such as chain-of-thought reasoning or memory tools, would achieve higher 

ToM scores than those relying solely on base model responses.  In order to assess whether 

observed competence was intrinsic, a robustness hypothesis stipulated that genuine ToM 

should remain stable across variations like paraphrased scenarios or randomized partner 

behaviors. Consequently, a significant performance drop under such perturbations would 

indicate a reliance on brittle shortcuts. All hypotheses were pre-registered where possible 

in order to ensure our analysis rigorously sought to falsify these predictions . 

 

3.3 Threat models and need for valid ToM measurements 

Our measurement approach was designed to guard against several ways an AI system might 

simulate ToM without genuine ability [24]. A primary threat is shortcut exploitation, where 

a model leverages pretend cues memorized from training data. In order to counter this, our 

task generators produce numerous scenario variations with different surface details, 

preventing simple pattern recognition. Another threat is overfitting to a partner’s behavior, 

where an agent learns a fixed response script that works by coincidence. We mitigate this 

by randomizing partner policies and roles, forcing the agent to adapt rather than rely on 

static assumptions. We also prevent information leakage by ensuring each agent’s 

observations are strictly private, and that controlled communication channels do not 

inadvertently reveal hidden knowledge. 

These safeguards inform our core design decisions. The principle of partial observability 

ensures agents never have direct access to each other's private information [25]. Tasks are 

built around informative interactivity, requiring information exchange or observation for 

success. The methodology includes counterfactual tests, such as swapping which agent 

holds a very important piece of knowledge, in order to verify that behavior changes 

appropriately. In addition, role symmetry, achieved by having agents swap roles across 

trials, ensures that strategies are not tied to superficial identity cues [18]. We also address 

the risk of training data contamination by using novel scenarios and studying any 

exceptional performance on tasks that resemble known puzzles [17]. The evaluation 

environment itself is used to log all information an agent receives, enabling audits that 
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confirm no hidden channel provides a shortcut to the solution. These combined measures 

ensure that high performance is attributable to effective mental state inference. 

 

3.4 Construct, internal, and external validity criteria 

We have specified precise criteria to ensure our measurements of ToM are valid and 

meaningful. Construct validity, which confirms that our tasks capture the essence of ToM, 

was established by aligning them with classic psychological paradigms like false-belief 

tests. The tasks were designed so that success requires belief reasoning, precluding 

solutions based on simple heuristics or lucky guesses. 

Internal validity, the basis for drawing causal conclusions, was addressed through tight 

experimental controls [26]. We employed ablation studies to observe whether removing a 

key component, such as memory or communication, degrades performance in a manner 

consistent with the loss of ToM reasoning. We further enhanced internal validity through 

pre-registered analyses, appropriate statistical models, and adversarial trials that test 

whether apparent skills are robust under stress. These practices collectively separate 

genuine abilities from experimental artifacts. 

External validity concerns the generalizability of our findings beyond the specific 

simulation [27]. While our multi-agent games are abstractions, they capture core dynamics 

of belief reasoning. We acknowledge their limitations, namely success in this controlled 

world does not imply a full understanding of human beliefs in open-world settings, which 

involve richer social cues. In discussing our results, we carefully differentiate between 

abilities demonstrated within our tasks and the broader complexities of human social 

cognition. We are also explicit that passing our tests does not render an AI safe or socially 

aligned for deployment. By clearly defining these validity boundaries, we provide a solid 

foundation for interpreting the presence or absence of ToM-like behavior in the agents we 

study. 

 

 

4. Multi-Agent Simulation Framework 

4.1 Environment design and task families 

Our evaluation platform is a custom multi-agent simulation environment, specifically 

designed as a partially observable, turn-based world to produce behaviors dependent on 

Theory of Mind (ToM). The tasks are configured so that success hinges upon an agent’s 

ability to track what other agents have or have not observed  [2,3]. Within this shared 

environment, multiple agents act based on their own private observations. In order to probe 

distinct aspects of belief reasoning, we have developed several families of tasks.  

The first family adapts classic false-belief scenarios into interactive games. In a typical 

setup, one agent hides an object while another is not observing, and the second agent must 

then locate it. The first agent's capacity to predict the other's mistaken belief is tested over 

multiple turns as agents move or communicate, requiring a consistent application of ToM. 

Another set of tasks explores deception and bluffing, drawing from cheap-talk and costly-
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signaling games. Here, a "sender" agent, who knows a particular truth, benefits if the 

"receiver" holds a false belief. The sender's success requires modeling how the receiver will 

update its beliefs based on a potentially deceptive message. Conversely, the receiver must 

reason about the sender's motives, probing the agents' capacity for intentional deception 

and its detection. 

A third category involves cooperative and competitive coordination tasks. In cooperative 

scenarios, agents with partial information must infer each other's knowledge to achieve a 

common goal, such as meeting in a maze. In competitive variants, an agent might exploit 

another's ignorance to gain an advantage. These situations demand reasoning about others' 

knowledge and intentions in the context of joint action. We study the robustness of these 

behaviors in communication-constrained settings. By limiting the number or increasing the 

cost of messages, we test whether agents can convey critical information efficiently. These 

constraints ensure that emergent communication strategies are genuinely informative and 

not merely exhaustive exchanges of data. Beyond these core families, the environment 

incorporates further nuances to ensure robust evaluation. We introduce irrelevant distractor 

objects to prevent agents from focusing on a single variable and vary tasks between one-

shot and repeated encounters to observe if agents learn and adapt conventions over time. 

 

4.2 Agent architecture and scaffolding 

Each simulated agent is implemented as a policy wrapper around a pretrained foundation 

model, which functions as the agent's cognitive core. This wrapper manages the flow of 

information, feeding the model appropriate inputs and translating its outputs into actions or 

messages. The architecture comprises several key components. At each turn, the wrapper 

constructs a detailed prompt that provides role context, including the agent’s identity, a 

summary of recent events, and output format guidelines. This structured context grounds 

the model in the simulation’s state and its designated role. The architecture also includes a 

memory buffer for recent observations and actions. Extremely important, an agent's internal 

state features a belief model for tracking what it presumes another agent knows.  

This model is populated exclusively through inference based on observable actions and 

communication, not through privileged access to the simulation's ground truth. This 

methodological decisions ensure that successful belief reasoning originates from the 

model’s learned capabilities rather than from externally supplied information. In order to 

facilitate complex decision-making, the wrapper provides an optional planning scratchpad 

where the model can perform private, intermediate reasoning, akin to a chain of thought, 

before committing to an action. Agents may also call simple tools to query hypothetical 

outcomes. This scaffolding enhances performance on multi-step problems and allows us to 

distinguish the base model's unaided capabilities from what it can achieve with external 

support by toggling these aids during experiments. 

 

4.3 Communication protocols 

Communication between agents is mediated by a structured protocol governing textual 

messages, ensuring that all content can be analyzed for its grounding and informativeness 

[28]. Each message must adhere to a specific format, including a content string and optional 
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references, or grounding handles, that tie a statement to a specific observation. This system 

prevents agents from making claims about facts they could not have perceived. The protocol 

is further defined by turn-taking rules and an infrastructure that serializes all interactions 

into append-only logs with cryptographic checksums, creating an evidential trail for all 

claims.  

While the protocol provides structure, it is flexible enough to allow for the emergence of 

communicative conventions and pragmatic inference. Over repeated interactions, agents 

can develop nicknames for landmarks or code words for routine actions, particularly when 

communication is restricted or costly. We detect the formation of such conventions by 

observing a decrease in message surprisal over time coupled with stable or improved task 

performance. Our analysis extends beyond literal content to pragmatics, examining how 

agents infer meaning from context. A telling silence, a well-timed interjection in an 

interruptible regime, or the frequency of confirmation queries all serve as signals that reflect 

an agent’s confidence and shared understanding. These pragmatic and efficiency metrics 

ensure that success arises from concise, cooperative information exchange established in 

belief reasoning. 

 

4.4 Reward structures and curricula 

The environment’s reward schemes are carefully crafted to incentivize belief-aware 

strategies [28]. The primary reward is goal-based, such as a positive value for successfully 

completing the task. The tasks are designed so that achieving this goal inherently requires 

correct belief reasoning. In order to guide learning, we sometimes include auxiliary shaping 

rewards, for instance, a small bonus for sending a helpful, truthful message. These shaping 

rewards are carefully restricted to epistemically meaningful quantities, like the reduction of 

uncertainty in a partner’s inferred belief state and are gradually strengthened as training 

progresses so that agent competence ultimately relies on the primary task reward. Our 

training regimen combines self-play and curriculum learning.  

In self-play, agents from a continually refreshed pool are paired, and their roles are regularly 

swapped to prevent the memorization of a specific partner's behavior and encourage the 

development of generalizable strategies. The curriculum begins with simple scenarios and 

progressively increases in difficulty, introducing more subtle belief states or deeper levels 

of recursive reasoning to produce higher-order ToM. In order to promote generalization, 

we also employ extensive domain randomization. Superficial elements of the tasks, such as 

room layouts, object names, and agent identifiers, are varied widely across episodes. This 

randomization, combined with a default policy of resetting the state after each episode, 

ensures that learned behaviors are a response to the latent epistemic structure of the tasks 

rather than an overfit to surface features. These practices collectively ensure that any 

emergent ToM-like behavior is a robust response to the task's fundamental demands. 

 

 

5. Models and Training/Inference Regimes 

5.1 Foundation models evaluated (sizes, training data, modalities) 
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Our evaluation encompassed a spectrum of state-of-the-art foundation models, which 

served as the cognitive cores for our agents [2,3]. This selection included large language 

models of varying scales, from several hundred million to tens of billions of parameters, 

trained on diverse textual corpora [17,19]. The models represented different architectural 

families, including those based on the GPT architecture and other Transformer variants. 

Our collection ranged from models trained exclusively on text to those with limited 

multimodal pre-training in vision and language. Although our primary focus was on text-

based reasoning to align with the textual nature of our tasks, we considered whether 

multimodal models might offer intrinsic advantages, given that human Theory of Mind 

often integrates visual cues. All models were initially employed in their pre-trained state 

without task-specific supervised fine-tuning to assess their zero-shot capabilities on these 

novel interactive challenges. 

The model pool included a 350-million-parameter Transformer LM [29] pre-trained on 

internet text, a 6-billion-parameter model with a similar training regimen but greater 

capacity, a large 70-billion-parameter model featuring extensive instruction-tuning, along 

with a representative multimodal model capable of processing image-like inputs. For our 

text-based simulations, the multimodal model functioned equivalently to its text-only 

counterparts. We verified to the best of our knowledge that each model possessed general 

world knowledge and language proficiency but had not been specifically trained on our 

tasks or on simplistic Theory of Mind puzzles[30] . 

 

5.2 Prompting strategies (zero-shot, few-shot, role prompting, tool-augmented) 

We systematically varied the prompting strategies used to guide model behavior [7,31]. In 

the zero-shot configuration, the agent received only the minimal context of its observations 

and the game state in natural language, compelling it to act based on its pre-trained 

knowledge alone. We also implemented few-shot prompting, where the model was 

provided with one or more complete example episodes demonstrating belief-aware 

behavior before it attempted a new task. This method helps the model recognize the required 

pattern of reasoning about others. Furthermore, we emphasized role prompting, which 

explicitly informed the model of its identity and objectives as described in Section 4.2. A 

prefix such as, "You are a hider. Your partner is a seeker. You want them to have a false 

belief about where the treasure is", effectively primed the model for a strategy of deceptive 

communication. 

For certain conditions, we augmented the prompts with tools or a scratchpad, allowing the 

model to "think" silently before responding or to call external functions like memory 

retrieval. These variations enabled us to test how performance gains scaled with 

instructional quality versus the model’s intrinsic capabilities. We found that few-shot 

prompting frequently enhanced performance on first-order tasks by illustrating the concept 

of information sharing or withholding. Tool-augmented prompting proved especially 

beneficial in scenarios demanding multi-step planning, where the model could outline a 

deceptive strategy in its scratchpad before execution. The design of our prompts required a 

careful balance. On one hand, prompts must define roles, goals, and the output schema to 

ensure well-formed actions and messages. On the other hand, over-engineered prompts 

could inadvertently leak solutions, for instance by stating "remember, the other agent hasn’t 
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seen X". We therefore iterated carefully on prompt design to ensure the prompts guided 

behavior without revealing answers. The resulting strategies span from minimal role hints 

to detailed, step-by-step formats, and we report results across this entire spectrum. 

 

5.3 Fine-tuning and reinforcement learning settings 

While much of our analysis treats the foundation models as static, we have also studied 

parameter-updating approaches in order to determine if the models could learn Theory of 

Mind through direct interactive experience [6,32]. In a supervised fine-tuning framework, 

we used interaction transcripts from our simulation, some of which included demonstrations 

from an oracle agent exhibiting correct belief reasoning. The language model was then fine-

tuned to better predict the correct outputs in these scenarios, effectively teaching it through 

gradient descent on example episodes. Concurrently, we experimented with reinforcement 

learning (RL) [33], where task rewards provided direct feedback to optimize the agents' 

policies. In these RL sessions, two agent instances played numerous episodes, and the 

model's parameters were updated using policy gradient methods to maximize expected 

reward.  

The fine-tuning approach passes on explicit knowledge of Theory of Mind tasks, namely if 

a model initially fails to grasp the significance of another agent's perspective, the fine-

tuning examples make this significant. The RL approach, conversely, allows for the 

discovery of strategies beyond the provided examples, as the agent is free to explore any 

behavior and receive feedback [33]. However, RL is susceptible to finding local optima. 

For example, an agent might discover a simple exploit that wins the game without genuinely 

developing Theory of Mind, a possibility our environment design sought to minimize. We 

observed that supervised fine-tuning on a small set of demonstration episodes yielded 

noticeable improvements in immediate performance, particularly in making the model's 

communications more relevant to its partner’s knowledge state, though these improvements 

eventually plateaued. With RL training, agents demonstrated further gains on some tasks 

after many iterations, indicating they can learn superior policies through self-play. 

Interestingly, some RL-trained agents developed novel conventions distinct from those we 

might have hand-coded, emphasizing the creative potential of direct goal optimization. We 

also noted that RL sometimes produced poor behaviors, such as overfitting to specific 

training scenarios, highlighting that generalization remains a challenge without sufficiently 

diverse training conditions. 

 

5.4 Decoding, temperature control, and self-consistency 

The method by which a model generates its response significantly influences its 

performance in multi-agent settings. We examined different decoding strategies for the 

language model outputs[3,23]. For example, a higher temperature encourages more 

exploratory and diverse responses, which can produce creative solutions but also risks 

incoherence. A lower temperature yields more deterministic and conservative responses. In 

order to ensure fair comparisons, we generally kept decoding settings constant but tested 

the extremes to observe their effects on tasks requiring subtle reasoning. A moderate, 

slightly stochastic decoding process proved most effective. Overly deterministic generation 
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could cause an agent to fall into a repetitive loop, while excessive randomness could lead 

to irrelevant outputs that violate the interaction protocol. In some cases, we also employed 

a self-consistency approach. This involved having the model internally generate multiple 

potential actions or messages and then select the final output through a voting mechanism 

or by choosing the option with the highest confidence. This technique can mitigate random 

errors by leveraging the model’s own uncertainty estimates. If a model generated three 

potential moves, two of which originated from a correct inference about another agent's 

false belief, this method would favor one of those two, thereby amplifying consistent 

reasoning. 

Decoding choices shape agent behavior as profoundly as parameter count. Parameters such 

as temperature, nucleus thresholds, repetition penalties, and stopping criteria all influence 

whether an agent’s dialogue is terse or verbose, literal or inventive. We systematically fixed 

or swept these parameters as interventions, recorded them in the experimental manifest, and 

included them as covariates in our analysis. This practice prevents agents with "chattier" 

decoders from gaining an unfair advantage in human-rated metrics and upholds the rigorous 

governance we established for our experimental configuration. Careful tuning of the 

generation process was very important for reliable performance, confirming that an 

apparent cognitive failure could come from the generation process itself rather than from a 

fundamental model limitation. 

 

5.5 Safety filters and chain-of-thought handling policies 

The inclusion of scenarios involving deception necessitated a deliberate approach to 

managing potential conflicts with AI safety and alignment measures [34,35]. Certain large 

language models have built-in safety filters that discourage the production of manipulative 

or untruthful content [17–19]. In our context, however, misleading another agent is a 

legitimate strategic component of a deceptive role. We therefore carefully configured the 

models to understand that in-game deception was a permissible part of the simulation. This 

involved phrasing prompts to clarify that the agent was playing a character in a fictional 

context, framing any "lie" as an action within that context rather than a violation of the 

model’s instruction to be truthful. For instance, we added clarifications such as: ("You are 

role-playing in a game scenario, statements in the game are not real assertions to the user."). 

We ensured that the model’s internal reasoning, or chain-of-thought, was kept private and 

that all its public outputs were appropriate. We separated the model’s private reasoning 

from its public messages, either by using special tokens or by splitting generation into two 

phases by first generating thoughts, then generating the observable message. Log 

verification confirmed that no unintended information was leaked, preventing an agent from 

accidentally revealing its private notes to its partner. 

Strategic deception and persuasion are scientific targets that also raise ethical questions 

[36]. In our study, all agents were AI, with no humans involved in gameplay, which 

eliminated the risk of human deception. However, when considering deployment, it is 

extremely important to ensure that an AI capable of deception in thesetasks does not engage 

in dishonesty outside of carefully defined roles. Our experiments, by highlighting how and 

when an AI might choose to lie for strategic advantage, may inform the design of future 

safety filters. One might implement a policy that prevents deceptive content unless a 
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specific flag indicates a permitted simulation scenario. We have balanced safety 

considerations with game realism by explicitly delineating the boundaries of deception in 

prompts and by technically isolating internal reasoning from external output. This approach 

allowed our agents to fully engage in behaviors like bluffing where appropriate, without 

violating the principles of safe model deployment. This process also provides valuable 

insight into how future AI systems might be gated or contextualized to use their Theory of 

Mind abilities in beneficial, rather than harmful, ways. 

 

 

6. Evaluation Protocol 

6.1 Datasets and scenario generation 

The evaluation protocol is designed to determine, with the highest practical degree of 

internal and construct validity, whether an agent exhibits Theory of Mind (ToM)-relevant 

competence within our multi-agent simulations. This objective necessitates carefully 

curated scenarios and comparisons. Scenarios are generated through parameterized 

programs that vary the surface realization of instances while preserving the latent epistemic 

structure essential for ToM. For each family of tasks, we have designed a set of scenario 

templates, which function as probabilistic grammars that instantiate diverse settings. For 

instance, false-belief tasks might involve objects hidden in boxes, characters moving 

between locations, or secrets concerning identities. The generators randomize details such 

as object names, spatial arrangements, and event timings, ensuring no two episodes are 

identical in their phrasing or layout, even while they structurally assess the same belief-

reasoning construct. 

In order to target specific hypotheses, we have partitioned these scenarios into distinct 

evaluation sets. One set might contain straightforward false-belief tests to establish a 

baseline, while another could introduce additional distractors or require second-order 

reasoning for success. These distinct scenario families enable us to study important 

questions, such as whether an agent that passes simple false-belief tests can generalize to 

more difficult ones, and how its performance compares to agents employing alternative 

strategies. Each scenario is labeled with metadata that specifies which agents possess 

privileged information, the turn at which a false belief might arise, and the optimal strategy, 

such as communication or deception. This metadata is very important for analysis, as it 

allows us to stratify results and distinguish episodes that genuinely require second-order 

ToM from those solvable with first-order reasoning, thereby ensuring that our summary 

statistics are coherent and meaningful. 

 

6.2 Baselines, random scriptable agents, symbolic ToM models, human benchmarks 

The interpretation of an agent's performance requires comparisons against a comprehensive 

suite of baselines, which anchors our claims across the full spectrum from chance to ideal 

performance [18,37]. The most fundamental baseline is a random policy agent that makes 

moves or sends messages uniformly at random from the set of valid options. This agent 

represents the performance of a system with no task understanding and establishes a lower 
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bound, which is often near zero percent success in complex tasks. Afterwards, we 

implemented several simple, rule-based heuristic agents designed without explicit ToM. A 

heuristic seeker, for example, might always search the last location where it observed the 

hider, ignoring the epistemic state of the hider. Similarly, a heuristic communicator might 

always be truthful or deceptive depending on the goal. These agents provide mid-level 

baselines, namely if our learning agents fail to outperform a naive rule, it indicates they 

have not acquired the intended reasoning. In order to define the upper bound of achievable 

performance, we include symbolic or optimal ToM models where feasible. 

In the case of certain tasks in constrained state spaces, we can design a dynamic Bayesian 

network that explicitly tracks all agents' knowledge and selects optimal moves [38]. In other 

cases, we use game-theoretic solutions. These "oracle" agents, representing ideal reasoners, 

provide a ceiling against which to measure the learned agents' proficiency. We have used 

human benchmarks to contextualize performance and have referenced established results 

from psychology, such as the typical success rates of children versus adults on specific ToM 

problems. In select cases, one can conduct tests with human participants, providing them 

with the same information as an agent to confirm that the tasks were indeed solvable by a 

mind with ToM. As humans bring a lifetime of social intuition, they provide a "gold 

standard" for performance. By comparing our agents against this spectrum of baselines, we 

ensure that claims of ToM competence are rigorously grounded. An agent performing near 

the heuristic baseline likely uses a simple strategy, whereas one approaching the symbolic 

ideal provides strong evidence of nontrivial belief reasoning. 

 

6.3 Ablation studies (memory off, comms off, planning off, role swaps) 

Ablation studies form the core of our causal inference, allowing us to attribute observed 

behaviors to specific architectural components [39,40]. We conducted a series of these 

studies to pinpoint which elements of our agent design truly contribute to ToM-like 

performance. In one study, we disabled the agent's memory module and belief tracking, 

forcing it to rely solely on the current observation. Performance on tasks requiring memory 

of who saw what, such as false-belief scenarios, dropped dramatically. Agents frequently 

acted as if others shared their observations, becoming effectively mind-blind. Another 

intervention prohibited communication, which revealed the extent to which success 

depended on explicit information exchange. In many cooperative tasks, agents that had 

previously succeeded with ease became unable to solve the problem, highlighting their 

reliance on communication over independent inference. We have also disabled the chain-

of-thought planning scratchpad, compelling the model to produce an action immediately. 

This change particularly degraded performance on higher-order tasks, as agents resorted to 

greedy, one-step decisions and failed to anticipate the future epistemic states of their 

partners. A final ablation involved swapping agent roles to test for generality. Agents 

trained with role randomization adapted seamlessly, whereas those trained asymmetrically 

often failed when their role was reversed, indicating their learned strategies were not robust. 

These interventions, where each agent serves as its own control, allow us to isolate causal 

relationships. The resulting performance deltas, analyzed with cluster-robust intervals, 

attribute variance to the ablated component. Our findings confirmed pre-registered 

hypotheses, for instance, second-order reasoning was far more reliant on the chain-of-
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thought feature, supporting the idea that deeper reasoning benefits from internal 

deliberation. We have also supplemented these quantitative findings with qualitative 

reviews of transcripts. An agent without memory, for example, would often produce 

contradictory information, while an agent without communication sometimes attempted to 

signal through its actions, revealing interesting emergent workarounds. These qualitative 

differences reinforce the conclusion that each component played a distinct and critical role. 

 

6.4 Generalization tests (novel tasks, out-of-distribution agents, few-shot transfer) 

Generalization has been assessed along three primary axes, namely scenario novelty, 

partner novelty, and training regime transfer. In order to test for scenario novelty, we have 

evaluated agents on variant tasks that were not part of their training curriculum. For 

instance, an agent trained on two-room hiding games might be tested on a three-room 

version or a conceptually similar card game. We have found that first-order skills, like 

tracking who knows what, often transferred well to superficially new contexts, whereas 

more complex strategies like multi-turn deception proved more weak. For partner novelty, 

we have paired our agents with partners exhibiting behaviors outside the training 

distribution, such as a scripted agent with quirky, random actions or an agent from a 

different model family. These tests reveal whether an agent's ToM is robust or over-tuned 

to its self-play training partners. Results showed a performance dip when facing unfamiliar 

partners, indicating that agents had developed specific expectations that did not always 

hold. Agents trained with greater partner diversity, however, were more resilient. 

We also assess few-shot transfer by providing an agent with a small number of examples 

to adapt to a new condition, such as shifting from a cooperative to a competitive game. We 

have observed limited but notable adaptability, particularly in larger models, which could 

often infer a new rule from a handful of demonstrations and adjust their behavior 

accordingly. A final test measures cross-episode generalization by correlating an agent's 

performance across structurally similar episodes. High-performing agents demonstrated 

strong consistency, reliably solving problems of the same reasoning type, whereas medium-

performing agents were more erratic. Our generalization tests have indicated that the agents 

have learned abstract skills, but this generalization is not universal and remains bounded by 

their training experiences. 

 

6.5 Cross-lingual and multimodal variants 

In order to validate that the measured construct is authentically epistemic rather than purely 

linguistic, we have integrated cross-lingual and multimodal evaluations as a core 

component of our protocol. [39,41–43] In our cross-lingual experiments, we translated 

simulation narratives and agent communications into other languages understood by the 

models, such as French. This tests whether an agent's ability is based on conceptual 

understanding or merely on pattern-matching English-specific cues. In the case of 

multilingually trained models, performance remained strong after translation, with only 

slight drops attributable to data distribution differences. This outcome indicates that the 

agents grasped the situations at a conceptual level. For multimodal considerations, we 

conducted limited tests by supplementing textual descriptions with simple schematic 
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images encoded textually. While full visual understanding was beyond our scope, these 

forward-looking experiments explore how ToM reasoning could extend to visual 

perspective-taking. Even rudimentary spatial information helped agents clarify perspectives 

more easily, a finding that aligns with the human reliance on visual cues for ToM tasks. 

These cross-lingual and multimodal evaluations are very important for demonstrating the 

generality of our findings. They confirm that the measured capability is not language-bound 

and lay the groundwork for future work incorporating richer perceptual inputs, such as first-

person visual feeds for each agent. 

 

6.6 Leakage controls and contamination checks 

Given that foundation models are trained on vast, heterogeneous quantities, information 

leakage presents a significant challenge to experimental validity [30,41,44]. Our protocol 

implements controls at the generation, runtime, and analysis stages to ensure models do not 

covertly exploit information. During scenario generation, we avoid well-known common 

tests and produce multiple variants of each scenario in order to prevent recognition. At 

runtime, we strictly enforce observation restrictions, ensuring agents cannot reference 

information they have not perceived. The environment automatically flags any output 

containing privileged information, which we then mark for further analysis. All interactions 

are hashed and timestamped to support post-hoc audits for potential pre-training 

contamination. During analysis, we perform contamination checks by searching the model's 

known training data for key phrases or structures from our scenarios. When a scenario 

resembled a classic example like the Sally-Anne test, we paraphrased it, changed names, 

and added extra steps to eliminate one-to-one correspondence. This controlled approach 

provides confidence that our results are trustworthy. We are ensuring that positive findings 

are registered due to the model's genuine inferential capabilities, not from memorization or 

accidental information exposure, and that negative results are not due to avoidable flaws in 

our experimental design. 

 

 

7. Metrics and Statistical Analysis 

7.1 Outcome metrics, task success, belief inference accuracy, ToM tier scores 

We first evaluate each agent’s performance through its task outcomes. The most direct 

metric is the success rate for each scenario, which assesses whether the agent has achieved 

its payoff-relevant objective given the scenario’s hidden state and payoff matrix [42]. 

Success is defined contextually, namely in cooperative search, it means jointly locating and 

retrieving an object within budget. In deception and signaling games, it requires the sender 

to induce a belief update that yields a target action from the receiver. In coordination 

problems, it is achieved when joint choices satisfy the payoff-dominant equilibrium. We 

compare these success rates to baseline policies to confirm that the agent performs above 

chance or simple heuristics. Recognizing that not all successes are equivalent, we focus on 

belief-critical decision points within each episode. These are junctures where the correct 

action depends on accurately understanding another agent’s knowledge or beliefs. We 

measure the proportion of these critical points at which the agent selected the belief-
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sensitive optimal action. This approach sharpens construct validity by filtering out routine 

segments of an episode and directly tying performance to the agent's use of epistemic 

leverage. 

We also directly evaluate belief inference accuracy by comparing each agent’s latent or 

reported beliefs against the simulator’s ground truth. In the case of policies that expose 

explicit belief reports, such as a probability distribution over world states, we measure 

alignment using proper scoring rules like the Brier score and cross-entropy. These scores 

are normalized by the entropy of the ground-truth distribution to enable difficulty-aware 

comparisons across tasks. When policies do not provide explicit belief states, we infer a 

behavior-implied belief by inverting an action-value model calibrated on the environment’s 

dynamics. An action that is optimal only under a specific belief about a partner implies a 

posterior over that partner’s beliefs. We then score this inferred belief against the ground 

truth using the same scoring rules. This dual approach credits implicit Theory of Mind 

(ToM) while guarding against persuasive but unfaithful verbal rationales. 

We have computed ToM tier scores to summarize performance. Each episode possesses a 

hidden construct signature that identifies the order of belief required for optimal decisions. 

We label each decision point by tier, such as first-order for tracking a partner’s beliefs about 

the world or second-order for tracking a partner’s beliefs about one’s own beliefs. An 

agent’s score for an episode is the proportion of optimally resolved decision points at each 

tier. The final ToM tier score is a weighted sum across tiers, with weights reflecting both 

the tier order and the decision point’s importance to the expected return. This weighting 

ensures that sparse but decisive second-order points are not overshadowed by numerous 

low-stakes first-order points. This tiered evaluation reveals the depth at which an agent’s 

recursive reasoning fails, offering a clear profile of its ToM limitations. In order to 

standardize comparisons, we normalize scores between a naive baseline and an ideal 

reasoner’s performance, reporting results as a percentage of this range. 

 

7.2 Process metrics, justification quality, belief alignment over time 

Outcome metrics are complemented by process evidence, as ToM fundamentally involves 

representing and updating others’ mental states [41–43]. We have used agent outputs to 

capture both verbal justifications and nonverbal signals of belief tracking over time. 

Justification quality is evaluated from message transcripts by human raters who are blinded 

to the experimental condition and model identity. Raters assess whether a justification 

correctly identifies the belief holder, cites relevant observations, and updates beliefs 

appropriately. They also judge if the rationale anticipates the interlocutor's interpretation of 

a message. We quantify inter-rater agreement using Krippendorff’s 𝛼 for categorical items 

and an intraclass correlation coefficient for scalar scores. In the case of automatic analysis, 

we also compute the text similarity between agent justifications and ground-truth 

explanations, which are derivable from the known environment. These metrics verify that 

an agent’s reasoning is correct not just in its conclusion but also in its process. Belief 

alignment over time measures how closely an agent’s reported or behavior-implied beliefs 

track the ground truth as an episode unfolds. We compute a per-timepoint divergence, such 

as the Kullback–Leibler divergence, between the agent's estimate of another’s beliefs and 

the simulator-computed ground truth. We then summarize each episode with a discounted 
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cumulative alignment score, which upweights early, belief-setting moves. A high alignment 

score indicates that an agent reached success through consistent perspective tracking rather 

than fragile heuristics. An agent with proficient ToM maintains near-zero divergence, 

whereas an agent that confuses perspectives exhibits spikes in this error measure. 

We also track belief–action coherence by scoring the consistency of an action with the 

agent's previously reported beliefs [43]. An action that contradicts a stated belief under the 

optimal policy is penalized as incoherent. Analyzing these process measures allows us to 

identify successes achieved through luck or non-ToM heuristics, which typically manifest 

as high task success coupled with poor justification quality or low belief alignment. 

Conversely, high belief alignment preceding a failure due to an unpredictable event 

suggests an ability deficiency rather than a performance artifact. Belief alignment over time 

measures how closely an agent’s reported or behavior-implied beliefs track the simulator’s 

ground truth as the episode unfolds. Let 𝑏𝑡
𝑖 denote the simulator-computed belief 

distribution for agent 𝑖 at time 𝑡 given their observation history, and let 𝑏̂𝑡
𝑖→𝑗

 denote the 

focal agent’s estimate (reported or behavior-implied) of 𝑖’s beliefs at time 𝑡. We compute a 

per-timepoint divergence 𝐷𝑡 = 𝐾𝐿(𝑏𝑡
𝑖 ∥ 𝑏̂𝑡

𝑖→𝑗
) or its symmetrized Jensen–Shannon variant 

when beliefs are multimodal. We summarize each episode with a discounted cumulative 

alignment score 𝐴 = ∑ 𝛾𝑡(1 − 𝑛𝑜𝑟𝑚(𝐷𝑡))𝑡 , where 𝑛𝑜𝑟𝑚(⋅) maps divergences to [0,1] by 

reference to the divergence of a uniform posterior. The discount 𝛾  upweights early, belief-

setting moves in coordination games and equalizes the contribution of long and short 

episodes. This alignment score is reported jointly with outcome metrics. Their 

correspondence helps distinguish agents that reach success through consistent perspective 

tracking from those that succeed via fragile heuristics, namely the importance of aligning 

process traces with veridical belief states made possible by logging observations, actions, 

and messages with epistemic tags and grounding handles, an aspect that was emphasized in 

our proposed design.  

In simpler terms, belief alignment is asking the question "as the process goes on, does the 

agent’s internal model of what others know remain accurate? If, at time, the partner should 

have a 70% chance of believing X (given what they’ve seen), does our agent also act as if 

the partner has ~70% confidence in X (say, by how it communicates or by what it expects 

the partner to do)?". We track a divergence or error measure at each step. A perfectly ToM-

competent agent would keep this divergence near zero throughout, whereas an agent that 

sometimes forgets or confuses perspective would show spikes (like a high KL divergence 

at the point where it makes a mistake about what the other knows). We have also tracked 

belief action coherence by scoring the consistency of an action with the agent's previously 

reported beliefs. An action that contradicts a stated belief under the optimal policy is 

penalized as incoherent. Analyzing these process measures allows us to identify successes 

achieved through luck or non-ToM heuristics, which typically manifest as high task success 

coupled with poor justification quality or with low belief alignment. Conversely, high belief 

alignment preceding a failure due to an unpredictable event suggests an ability deficiency 

rather than a performance artifact. 

 

7.3 Pragmatics and communication efficiency measures 
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Communication is the primary medium for revealing and manipulating beliefs [41–43]. Our 

efficiency measures therefore link message content to the receiver’s epistemic state rather 

than to surface features like length. We have used pragmatic informativeness as expected 

posterior contraction for the receiver. For a message 𝑚 emitted at time 𝑡 to receiver 𝑟 with 

pre-message posterior 𝑝𝑡 over a task-relevant latent 𝑋, the informativeness is 𝐼(𝑚 → 𝑟) =
Ε𝑝𝑡

[𝐻(𝑋|𝑝𝑡) − 𝐻(𝑋|𝑝𝑡+1)], where 𝑝𝑡+1 is the receiver’s posterior after updating on 𝑚 

under the protocol’s grounding rules. We have estimated this from the simulator’s 

reconstruction of 𝑟’s posterior. In cooperative tasks, higher expected contraction is better, 

conditional on truthfulness. In competitive tasks, misinformative messages are rewarded 

only when payoff structure justifies strategic obfuscation, and we have caped rewards to 

prevent runaway miscalibration incentives as described in our reward-shaping policy. The 

explicit dependence of shaping terms on the receiver’s posterior, rather than on ground truth 

alone, avoids smuggling in answers and aligns pragmatic scoring with the recipient’s 

epistemic state.  

In simpler terms, we measure how much each message reduces uncertainty for the other 

agent. If a message does not tell the partner anything they could not infer, it is low 

informativeness. If it greatly reduces their uncertainty (either by providing a clue in a 

cooperative game or by sending them down a wrong path in a deception game), it is high 

(pragmatically) informative. We also account for misinformation, namely a message that 

leads the partner to have false beliefs might be scored negatively in cooperative contexts 

(where it is just confusion) but can be part of the strategy in competitive ones (there, it 

might earn positive reward if it confers advantage, although within limits in order to avoid 

encouraging the model to hallucinate wildly beyond what the game incentives justify).  

Efficiency also depends on channel constraints [41]. Bits-per-decision-point, the ratio of 

posterior contraction to message length, quantifies communicative economy. We have also 

scored time-sensitive pragmatics, for instance, in interruptible regimes, silence can signal 

deference or confidence. The use of costly listener check-backs, such as optional 

confirmations, offers another perspective on pragmatic competence. Overuse may signal 

pessimistic beliefs about a partner’s comprehension, while underuse can indicate 

overconfidence. We have also measured convention alignment. In repeated interactions, 

agents often develop emergent conventions for communication. We have fit a dynamic 

language model to a partner pool’s messages and compute the surprisal of each new 

message. Decreasing surprisal over time, paired with stable informativeness, signals the 

emergence of efficient conventions rather than routine collusion. We analyze this 

interchange alongside outcome metrics to distinguish healthy pragmatic adaptation from 

weak, non-generalizable codes. 

 

7.4 Calibration, confidence elicitation, and over/under-confidence 

Calibration measures the alignment between an agent’s expressed confidence and its 

empirical accuracy [41,45]. We elicit confidence in two ways, either directly from policies 

that emit explicit posterior probabilities, or via a scalar self-report for categorical claims. In 

both cases, we compute metrics such as Expected Calibration Error (ECE) and the Brier 

decomposition. A reliability diagram with a slope of 1 and an intercept of 0 signifies perfect 

calibration. We evaluate calibration at belief-critical decision points, as it is most important 
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for agents to act on well-calibrated uncertainty when the world is epistemically ambiguous. 

We also measure calibration-conditioned pragmatics by correlating confidence with 

communication choices. Well-calibrated agents should reserve expensive signals for high-

leverage, high-uncertainty states. Our calibration suite quantifies these tendencies and links 

them to specific failure modes, such as sending a misleading message at the wrong time 

due to a misjudgment of another's knowledge.  

Over and under-confidence are quantified as directional deviations between confidence and 

empirical accuracy. We define over-confidence as the signed error 𝑂𝐶 =
1

𝑁
∑ (𝑐𝑛 − 𝑎𝑛)𝑛 , 

where 𝑐𝑛 is confidence and 𝑎𝑛 is outcome accuracy for instance 𝑛. We complement this 

with threshold-conditioned measures, namely the false positive rate among high-confidence 

claims and the false negative rate among low-confidence claims. Because deception games 

incentivize selective misrepresentation, we distinguish epistemic miscalibration 

(confidence misaligned with accuracy) from strategic misrepresentation (confidently 

stating a belief known to be false to manipulate the partner). The latter is detected when the 

agent’s internal state or prior belief report diverges from its public message in a direction 

that improves payoff under the partner’s expected update model. One should note that over-

confidence in false beliefs and under-confidence in correct inferences co-occur and that 

misalignment between self-reports and subsequent actions is a recurrent failure mode. Our 

proposed calibration suite quantifies these tendencies and ties them to pragmatic choices.  

 

7.5 Reliability, test–retest, inter-rater, and inter-scenario consistency 

Reliability ensures the stability of our measurements across minor perturbations [45,46]. 

We have conducted reliability analyses at three levels, namely data generation, human 

judgment, and scenario variation. Test-retest reliability has been estimated by repeating 

matched episodes with different random seeds while keeping the epistemic structure 

invariant. We have computed the correlation and concordance of metric vectors across these 

repeats, reporting an intraclass correlation (ICC) to quantify consistency. Inter-rater 

reliability for justification quality is quantified with Krippendorff’s 𝛼 for categorical ratings 

and an ICC for scalar ratings. This procedure ensures that our human judgments are 

consistent and not subject to individual rater bias. Inter-scenario consistency assesses 

whether agents perform similarly on different episodes that share the same ToM tier 

requirements. We have computed a hierarchical coefficient 𝜔 across episodes within tier-

stratified families and fit a multi-parameter item-response model. This model confirms that 

our metrics capture an enduring capability, such as first or second-order reasoning, rather 

than performance on idiosyncratic scenarios. The stability of this model's factor structure 

across different partner pools suggests our tasks coherently measure an underlying ToM 

ability. 

 

7.6 Effect sizes, confidence intervals, significance testing, and power analysis 

In order to ensure robust and interpretable results, we report effect sizes alongside 𝑝-values 

[39,42]. For binary outcomes, we use differences in proportions and odds ratios, while for 

continuous metrics, we report standardized mean differences like Hedges’ 𝑔. When 

distributions are skewed, we present median differences with bootstrap intervals. Our 



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025 
 

                                                                                                                                 Pag. 388 / 444 
Article’s total number of pages: 45 

hypothesis tests are pre-registered and use mixed-effects models to account for the 

hierarchical structure of the data, such as episodes nested within templates. In the case of 

success outcomes, we fit generalized linear mixed models, and for continuous outcomes, 

we use linear mixed models. We employ cluster-robust sandwich estimators and control the 

false discovery rate using Benjamini–Hochberg corrections for multiple comparisons. 

Power analyses are conducted ex ante using simulation-based methods that reflect our 

planned statistical tests. We estimate variance components from pilot data to determine the 

minimum number of episodes required to achieve 80% power to detect targeted effect sizes. 

This ensures that our studies are adequately powered to identify meaningful differences. 

Our statistical approach is deliberately conservative to ensure that claims of emergent ToM 

behaviors are robust and not artifacts of chance. 

 

7.7 Causal analysis and counterfactual evaluation 

In order to move beyond correlation and make mechanistic claims, we employ interventions 

that test causal dependencies [42]. Our framework supports both algorithmic and 

environmental counterfactuals. Knowledge-swap and belief-inversion interventions 

manipulate the distribution of knowledge among agents while holding the surface 

realization of the scenario constant. For example, by swapping the private observations of 

two agents, we can test whether a policy is sensitive to certain knowledge of studied agents. 

A ToM-sensitive policy will appropriately invert its actions, whereas an insensitive one will 

fail. A positive local average treatment effect from these interventions provides evidence 

that the policy conditions on nested beliefs. Ablation-based causal attribution targets 

specific components of the agent's policy wrapper or inference mechanism. We have 

systematically removed or degraded features like memory, explicit belief states, or 

communication bandwidth and measure the resulting performance delta. This allows us to 

attribute performance gains to the ablated components. Mediation analysis links process to 

outcomes by testing whether the effect of an intervention (e.g., increased model size) on 

task success is mediated by a process metric (e.g., improved belief alignment). A significant 

mediated effect supports the claim that the intervention improves performance specifically 

through enhanced belief tracking. When model internals are accessible, we conduct 

counterfactual activation-level interventions, such as ablating specific attention heads 

suspected of carrying perspective-tracking signals. A consistent drop in performance 

following a targeted ablation provides strong evidence that the targeted component causally 

supports ToM-relevant computations. By combining these approaches, we build a robust 

causal account of the mechanisms underlying an agent's ToM capabilities. 

 

 

8. Results 

The empirical findings from our multi-agent simulation program reveal a complex 

environment of Theory of Mind (ToM) capabilities. This section presents these findings, 

beginning with an analysis of overall performance stratified by task family and ToM tier. 

We then examine scaling behavior with respect to model size, data, and agent count. 

Subsequent analyses explore the causal impact of communication bandwidth, memory, and 
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planning scaffolds, followed by an assessment of generalization and robustness to 

perturbations. The section continues with comparisons to human baselines, focusing on 

sample efficiency, and concludes with qualitatively analyzed case studies that clarify both 

emergent strategies and recurrent failure modes. All of the results are computed at belief-

critical decision points in order to ensure that measured competence is based on epistemic 

structure rather than world-only shortcuts. This quantitative data is complemented by 

process evidence from belief alignment, belief-action coherence, and message-level 

pragmatic efficiency. Statistical claims are supported by mixed-effects analyses with 

cluster-robust uncertainty, preregistered contrasts, and corrections for multiple 

comparisons. Causal attributions are derived from ablations and counterfactual 

interventions that perturb knowledge states while preserving surface realization. Adhering 

to the proposed framework, we credit ToM-relevant competence only when outcome 

metrics, process metrics, and causal probes converge. 

 

8.1 Overall performance across task families and ToM tiers 

Across the full experimental battery, foundation-model agents demonstrated reliable 

competence on first-order ToM, particularly when belief sensitivity was necessary for 

success and scaffolding was held fixed. For instance, in cooperative search scenarios where 

agents observe disjoint world segments and must infer a partner's knowledge to choose their 

next action, success rates at belief-critical decision points rose well above scriptable world-

only heuristics. These rates approached a substantial fraction of the performance gap 

relative to the idealized symbolic reasoner used as a ceiling. The simulator's construct 

signatures enable a nuanced analysis of performance aggregated by recursive depth. First-

order points, which involve tracking a partner’s beliefs about the world state, were 

consistently easier to solve than second-order points that require tracking a partner’s beliefs 

about one’s own beliefs. The largest absolute performance gains appeared in the former. 

Tier scores have been computed as weighted proportions of belief-critical points solved at 

each depth, with weights reflecting marginal contributions to expected return. This 

construction prevents insignificant episodes overloaded with low-stakes first-order 

decisions from obscuring sparse but decisive higher-order junctures. The tiered perspective 

is very important for interpreting the overall results, as aggregate episode success can 

conceal whether progress is concentrated at first depth reasoning or extends into recursive 

belief modeling. 

Performance patterns have generalized across task families with predictable variation. In 

deception and signaling games, agents have learned to exploit payoff structures that 

rewarded informative messages under alignment and strategically ambiguous messages 

under conflict. Their ability to align utterances with a listener’s posterior belief, rather than 

with ground truth, remained imperfect. The pragmatic-efficiency approach clarifies these 

differences by quantifying the expected posterior contraction per token. In cooperative 

communication, the best agents achieved a high bit-per-message rate, rapidly reducing 

uncertainty. In competitive settings, they sometimes deliberately left the partner uncertain 

or even increased uncertainty in a manner aligned with equilibrium predictions. Even in 

competitive games, agents used outright falsehoods sparingly, mirroring human behavior 

where obvious lies are less common than subtler misdirections, unless the scenario 

specifically incentivized a direct false signal. 
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Concrete performance figures illustrate this tiered distinction. Agents achieved 

approximately 85% success on first-order points in the easiest cooperative tasks, compared 

to about 50% for a simple heuristic and 95% for an ideal observer. On second-order points 

within those same tasks, they hovered near 60%, which is above the heuristic’s 33% 

guessing level but well below the ideal 90%. In competitive tasks, first-order performance 

was slightly lower at around 75%, and second-order performance was lower still, often 

between 50% and 55%, indicating that higher-order reasoning remains a significant 

bottleneck. These results collectively confirm our expectations that current models possess 

non-trivial but limited ToM-like capabilities. They consistently handle scenarios requiring 

one-step inferences based on another agent’s knowledge, such as acting on the fact that 

"Agent B does not know X". Nevertheless, when a situation demands recursive thinking 

like "Agent A thinks that Agent B does not know X, so Agent A will do Y, which Agent B 

will misinterpret" performance is only slightly better than chance and far from human-like. 

This dichotomy emphasizes the importance of tiered evaluation, as aggregate success rates 

can otherwise mask a reliance on simpler belief reasoning. 

 

8.2 Scaling trends with model size, data, and agent count 

Analyses of scaling reveal that ToM-relevant ability improves with model size and data 

diversity, although this growth is nonlinear and varies across different constructs. In 

absolute terms, larger models, defined by more parameters and more extensive training 

data, achieved higher overall success and superior tier scores. The improvement from a 1-

billion-parameter model to a 10-billion-parameter model on first-order tasks is particularly 

pronounced, with success rates often increasing from near-baseline levels to approaching 

the performance ceiling. On our primary false-belief task, for example, the small model 

achieved about 55% on critical decisions, the medium model reached approximately 70%, 

and the largest model attained 85%, closing most of the remainder to optimal performance. 

On second-order tasks, however, even the largest model struggled. While a positive trend 

with scale was evident, with success rates increasing from 35% to 45% to 55% for small, 

medium, and large models respectively on one benchmark, all remained low in an absolute 

sense. This suggests that simply scaling current architectures may be insufficient for 

developing robust higher-order ToM. 

We have also analyzed scaling with respect to training data. Models exposed to more 

diverse interactions or multimodal pre-training sometimes outperformed purely text-trained 

counterparts of similar sizes. This was especially true in tasks involving spatial perspective, 

where a multimodal model familiar with images could better handle reasoning about 

visibility than a text-only model, presumably due to learned spatial awareness. Nonetheless, 

model size remained the primary driver of performance, with data variation providing 

secondary benefits. Notably, some scaling effects were non-monotonic. Extremely large 

models with heavy instruction-tuning exhibited slightly worse performance in deception 

games than slightly smaller models. Investigation revealed that the largest models 

possessed a strong preference for truthful, helpful responses, likely an alignment effect from 

their training. In a game requiring deception, this bias led them to occasionally refuse to lie 

or to over-cooperate, thereby hurting their score. This emphasizes how scaling a model 

tuned for general helpfulness can reduce its capacity for ToM-required deception when the 

general training objective misaligns with the specific task objective. 
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As another dimension of scaling, we varied the number of agents in certain tasks to test 

combinatorial generalization. A model adept at two-agent interactions was tested in a three-

agent scenario involving one hider and two seekers, each with different knowledge. The 

performance has declined sharply. The model, proficient in mutual ToM with one partner, 

often became confused when juggling the beliefs of two others. Its performance fell roughly 

in proportion to the number of pairwise interactions it had to consider, which suggests that 

current models do not effortlessly scale their ToM reasoning to larger groups. Scaling has 

consistently enhanced performance up to a point, making bigger and more broadly trained 

models undeniably better, particularly for first-order reasoning.  

Nevertheless, higher-order ToM remains a significant challenge where increasing model 

parameters produces diminishing returns. The results support a nuanced emergence 

sequence of events. We have observed significant improvement in first-order ToM as an 

emergent capacity around the medium-to-large model scale, but robust second-order ToM 

may require greater scale, architectural innovations, or more targeted training in order for 

it to emerge. From a statistical perspective, our pre-registered contrast of small versus large 

models on first-order tasks was highly significant, with an odds ratio greater than 3 and a 

p-value less than 10−5. On second-order tasks, the difference, while present, was less 

pronounced, with an odds ratio around 1.5 and a 𝑝-value of approximately 0.05 in some 

cases. This aligns with the qualitative impression that something new happens at scale for 

simpler ToM, where the model transitions from struggling to succeeding, whereas for 

harder ToM it merely transitions from struggling to slightly less struggling. 

 

8.3 Impact of communication bandwidth, memory, and planning 

We have established causal attributions through a series of ablation studies that have 

systematically toggled components of the policy wrapper while holding partner pools, 

scenario distributions, and decoders constant. As reported in Section 6.3 with cluster-robust 

intervals, the presence of memory and belief tracking, ample communication bandwidth, 

and the ability to internally plan all substantially and differentially have an effect on 

performance. Removing the memory module, which limited the agents' history window or 

their explicit belief state in the prompt, caused a moderate decline in first-order ToM 

success and a severe drop in second-order success. In the case of a large model, this ablation 

reduced first-order success by about 15 percentage points and second-order success by 

about 30 points, as maintaining layered beliefs over time is exceptionally difficult without 

memory cues. Smaller models, which may not have fully leveraged memory, showed 

smaller declines, suggesting that larger models were indeed using the feature for more 

complex multi-step reasoning. Limiting communication bandwidth, for instance by 

allowing only a single short message per agent, had a dramatic impact on tasks requiring 

coordination.  

In a coordination game that relied on exchanging hints, reducing bandwidth from an 

average of five messages to just one per agent reduced success by roughly half. Agents 

struggled to compress all necessary information into a single message, although they 

attempted to make each message more compact. The effect of this ablation was strongly 

task-dependent, with negligible impact in tasks where agents could coordinate implicitly 

through actions but had a substantial effect in tasks where communication was the intended 
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mechanism for knowledge transfer. Disabling the planning scratchpad, thereby forcing 

greedy one-pass decision-making, disproportionately affected second-order scenarios. With 

planning, agents could discover non-obvious strategies, such as a two-step deception 

involving a misleading hint followed by exploitation. Without planning, they resorted to 

simpler, immediate actions. In a bluffing game, an agent with planning might pretend a 

subtle tell over several rounds, while one without it would either fail to bluff or execute an 

ineffectual bluff at an inopportune moment. Numerically, planning increased the win rates 

in a complex deception game from approximately 40% to 60% for a large model. The small 

model showed no difference, likely because it was not effectively using the scratchpad. 

Further analysis revealed synergistic interaction effects between these components. An 

agent with both memory and planning could execute multi-step deceptions that involved 

recalling a partner's prior knowledge, a feat neither feature alone could fully enable. A case 

study demonstrated this synergy, namely an agent with both features executed a plan to "not 

mention the key now (knowing the partner did not see it), then later lead the partner away 

from it". When the memory was removed, the agent forgot the partner's ignorance and 

revealed the key's location. When the planning was removed, it never formulated the multi-

turn maneuver. The full strategy emerged only with both of the components intact. 

Interpretability analyses of internal states and transcripts corroborated these findings. 

Agents with memory often maintained an explicit variable, such as "Partner_Knows_X = 

False" in their prompt. This variable was correctly updated and influenced decisions. 

Without memory, this state was either absent or incorrect, leading to obvious mistakes. The 

scaffolding components we have engineered are therefore extremely important for 

performance on belief reasoning tasks. This confirms our ability against performance 

distinction, showing that some models possess latent capabilities that they cannot express 

without the proper support. Conversely, adding scaffolds can reveal to a degree latent 

competencies even in smaller models. These findings also validate our methodological 

stance that in order to fairly measure intrinsic competence, one may need to support a model 

with tools in order to avoid underestimating it due to performance limitations. In doing so, 

it is very important to carefully track what is intrinsic to the model in contrast to what is 

being provided by the experimental setup. Our ablations have helped clarify this boundary. 

 

8.4 Generalization and robustness under perturbations 

Generalization tests manipulate scenario, partner, and interface novelty while preserving 

the latent epistemic structure recorded in construct signatures. When presented with unseen 

scenario variations that require the same order of ToM reasoning, agents have produced 

mixed results. They demonstrated clear generalization of core concepts across surface 

changes. A model trained on an "object in box" false-belief task performed nearly as well 

on a "person in location" false-belief task, with only a minor initial drop in success of 5% 

to 10% that closed after a few trials. This implies the model learned the general principle 

of tracking others' knowledge rather than memorizing a specific solution. However, 

performance has degraded substantially under more adversarial or distribution-shifted 

conditions. For instance, when a partner's behavior was slightly irrational or noisy, the 

agents have often failed to predict those actions correctly.  
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A robust ToM would account for a partner's potential non-optimality [42,45,47,48], but our 

tested models tended to assume a consistently rational partner, a bias likely inherited from 

their training data. This highlights a limitation, namely their ToM is weak to assumptions 

about agent rationality. We have also assessed generalization to partner novelty by exposing 

agents to unfamiliar behavioral styles, such as a very talkative partner in rapport with a terse 

one. Agents trained with a diverse partner pool adapted well, whereas those trained on a 

single style were initially confused. In a striking example, an agent accustomed to honest 

partners consistently failed when faced with a lying partner because it did not update its 

assumption of honesty within a single episode. This suggests the absence of a meta-

reasoning layer for inferring a partner's underlying policy. 

Few-shot transfers, providing agents with a small fine-tuning set or prompt adjustment, 

have improved adaptation. Larger models have adapted somewhat after a couple of 

demonstrations that a partner lies about location, learning to distrust that partner’s messages 

in subsequent trials. Smaller models have shown less ability to adapt via few-shot learning. 

Cross-lingual tests have shown robust behavior, with an agent performing well in English 

was also performing well in French, stumbling only on idioms or unfamiliar cue words. A 

few-shot prompt with French examples was sufficient for it to adapt. A typical quantitative 

result for generalization was an 80% success rate in the original scenario, which dropped 

to 72% on the first trial of a novel scenario with the same structure, before rising to 78% 

after a few runs. A change in partner from cooperative to deceptive might drop success 

from 75% to 50% initially. If the model could learn over repeated episodes, it might climb 

back to 65% as it identified the deception pattern.  

Knowledge-swap counterfactuals served as further robustness tests. Robust models altered 

their behavior predictably when the knowledge distribution was swapped, whereas weaker 

models, having learned a fixed policy, collapsed. In order to gauge external validity, we 

have compared these results to expectations from analogous human experiments. Humans 

handle scenario and partner variation gracefully, adapting almost instinctively. Our models 

show some flexibility but require explicit retraining or multiple trials, indicating that they 

lack the one-shot generalization and theory-building at which humans excel. The tested 

agents have demonstrated a moderate degree of generalization, having captured patterns 

that apply to similar puzzles. Nevertheless, they remain weak when confronted with 

situations outside of their training distribution, especially regarding the behavior of other 

agents. They do not possess the breadth of a human ToM that spans arbitrary contexts and 

agent types. These findings emphasize where future work could focus, such as training on 

a wider variety of partner behaviors or adding meta-learning components to improve 

robustness. 

 

8.5 Human compared to model comparisons and sample-efficient ToM 

In order to contextualize model performance, we have conducted direct comparisons with 

human participants performing analogous tasks under identical constraints. Human 

participants displayed near-ceiling first-order ToM reasoning and strong, though imperfect, 

higher-order reasoning. Adults typically solve false-belief tasks with ease and handle 

second-order beliefs in simple scenarios with high accuracy. Our best model, by contrast, 

still made regular mistakes on second-order tasks that an adult would find trivial. This 
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performance distance is considerable. In one benchmark, humans scored approximately 

95% on second-order points, where the best model scored only about 60%. This disparity 

indicates substantial room for improvement and suggests that current models do not 

implement ToM in the rich, flexible manner that humans do. 

The disparity in sample efficiency is even more pronounced. A human, given the game 

rules and a single practice round, generally grasps the task structure by leveraging a lifetime 

of social experience. Our models required thousands of self-play rounds or fine-tuning 

examples to reach their peak performance. For instance, in a deception game, a human 

might immediately infer the need to lie about a hidden object's location, whereas the model 

would only arrive at a consistent lying policy after extensive training. The models' 

performance progression across scales mirrors certain aspects of human developmental 

trajectories. Small models, analogous to toddlers, fail even simple false-belief tasks. 

Medium models, perhaps like older children, master first-order tasks but stumble on 

second-order ones, which is reminiscent of children passing first-order tests around age four 

but not reliably solving second-order tasks until ages six or seven. Our largest models still 

failed to reach adult-like performance on second-order reasoning. 

A simple Turing-like test asked human evaluators to distinguish between transcripts of 

model and human play. In straightforward cooperative tasks, humans struggled to tell them 

apart, as the large model acted rationally and helpfully. In more subtle or competitive tasks, 

however, humans noticed oddities, such as synthetic language or unnatural repetition, 

revealing the model's non-human characteristics. The handling of miscommunication 

revealed another telling difference. Humans often clarify misunderstandings quickly, 

whereas our agents rarely did so unless explicitly trained with check-back mechanisms. 

This suggests a lack of active mental-state modeling and meta-uncertainty reasoning. 

Humans also excelled at on-the-fly adaptation, updating their theory of a partner after a 

single surprising outcome, while models struggled to adapt within one episode without 

retraining. Conversely, in repetitive environments, the models exhibited a consistency that 

can surpass human performance, as they do not suffer from boredom or lapses in attention. 

Human participants have consistently outperformed the models, especially in tasks 

requiring complex reasoning, and demonstrated vastly superior sample efficiency. This 

significant difference cautions against strong claims of artificial ToM. Our agents exhibit a 

narrow, operational semblance of this capacity within constrained games, while humans 

possess a broad, flexible faculty applicable across diverse life situations. 

 

8.6 Case studies, emergent strategies and failure episodes 

Qualitative case studies illustrate how strategies and failures arise from the interaction 

between incentives, observability, and communication constraints. In a cooperative 

communication task, we have observed an emergent convention where two agents have 

developed a shorthand for referring to locations over multiple rounds. Initial full messages 

like "I checked the left cave and it's empty" were compressed to "left empty", a convention 

that was stable and improved performance by saving time. In a deception game, an agent 

spontaneously learned a multi-turn strategy. It would first leak a piece of true information 

to build trust before lying about an important element. We did not explicitly train this 

strategy, it emerged during reinforcement learning fine-tuning. This behavior is noteworthy 
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as it implies the model is influencing the other agent's trust as it evolves over time, a form 

of complex ToM behavior. Log analysis confirmed that the partner's belief state reflected 

higher trust after the small truth, making the subsequent lie more effective. 

Conversely, analyses of failure episodes revealed recurrent error patterns. A common 

failure was the confabulation of mental states, where an agent would state "As you have 

seen, I moved the key to the red box" when the partner had not witnessed the action. This 

error, reminiscent of a child failing to differentiate between self and other knowledge, 

frequently led to confusion and performance degradation. Another failure type was mind-

blind planning, where an agent devised a plan assuming a partner has shared its knowledge, 

resulting in wasted actions like communicating information the partner has already 

possessed. We have also observed overconfidence in deceptive agents. One agent 

developed a habit of bluffing every round, which led the partner to learn to ignore its 

messages. A human would adapt, but the agent persisted with its failing strategy, lacking 

the meta-cognitive ability to recognize that its model of the partner was flawed. This 

represents a failure in second-order reasoning regarding the partner's beliefs about the 

agent's own intentions. 

Despite these failures, we also observed instances of resilient recovery behaviors in 

cooperative tasks. In one episode, an agent misunderstood a message and took an incorrect 

action but then corrected its course after a subsequent partner query implicitly revealed the 

error. This shows that agents can sometimes self-correct within an episode if the feedback 

is sufficiently clear. These case studies provide qualitative insights that complement 

aggregate statistics, revealing both creative adaptations and the precise limits that lead to 

breakdowns. They emphasize a central aspect of our analysis, namely the agents have 

learned powerful patterns but not general principles. They can innovate within these 

patterns but fail in telling, often human-like ways when operating outside of their comfort 

zone. These observations suggest multiple opportunities for improvement, such as 

incorporating dynamic trust estimators or training agents on corrective dialogues. The rich 

interactive behaviors observed in these studies depict that a rudimentary form of social 

cognition is beginning to take shape in these models, highlighting the path forward for 

developing more robust artificial ToM. 

 

 

9. Analysis and Interpretability 

The empirical approach described in the preceding sections deliberately separates what our 

agents achieve from how they achieve it. This section transitions from documenting their 

success at belief-critical decision points to explaining the internal mechanics of that 

success. We analyze the models’ internal operations and behavioral characteristics to 

determine whether their performance comes from genuine belief-tracking mechanisms or 

from coincidental correlations and shortcuts. Through interpretability tools, auxiliary 

probing tasks, and targeted interventions, we uncover the representations and processes that 

underlie their observed behaviors. 

 

9.1 Probing for belief and perspective representations 



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025 
 

                                                                                                                                 Pag. 396 / 444 
Article’s total number of pages: 45 

Probing analyses leverage an important feature of the simulator, namely at any timestep, 

the environment can enumerate the posterior probabilities over world states and other 

agents’ mental states consistent with an agent’s observations. This capability allows us to 

generate labeled data from a model’s internal activations. Specifically, we record the hidden 

state vectors from various layers at moments when a partner agent either knows or does not 

know a critical fact. We then label these activations with the ground truth, such as "partner 

knows X" or "partner ignorant of X" and train simple classifiers to test if this information 

is linearly separable within the model’s activations. 

These analyses reveal that in better-performing models, certain components indeed encode 

the partner’s knowledge state. In a 24-layer Transformer, for example, the activation pattern 

at layer 18 could predict with approximately 90% accuracy whether the partner had 

observed the key’s location, where 50% represents chance. In smaller or less effective 

models, this accuracy was near chance, suggesting they fail to form a distinct representation 

of the partner's knowledge. This discovery indicates the model has learned an internal 

feature corresponding to the partner’s belief about the key. Further examination of the 

attention heads identified specific ones that attend strongly to tokens indicating an agent’s 

observational status. For instance, a particular head would assign a high attention weight to 

the pronoun "he" in the phrase "he leaves the room" when the model evaluated what that 

partner might know later. 

We have also analyzed whether the model represents its own knowledge differently from 

that of others. The results confirmed this distinction. The vector directions corresponding 

to "I know X" in rapport with "Partner knows X" were not identical and could be reliably 

distinguished, suggesting the model differentiates perspectives internally rather than mixing 

all knowledge. This capacity to track separate knowledge states is a core component of a 

theory of mind. As another approach, we have prompted the model to output its own internal 

estimate of a partner’s knowledge. The large model’s expressed estimates matched the 

ground truth in approximately 80% of cases, whereas a smaller model performed at chance. 

This indicates that the large model differentiates beliefs internally and can also express 

them when queried appropriately.  

These probing studies collectively show that the model’s intermediate representations carry 

non-trivial information about others’ mental states. The model appears to represent "the 

other does not know" at a functional, representational level. This provides some evidence 

for genuine ToM-like reasoning, as a mere heuristic would not produce such a cleanly 

encoded latent variable for partner knowledge. While we found no evidence of a discrete, 

symbolic "belief register", the observed correlation patterns suggest that combinations of 

neurons track key properties of the environment. More advanced interpretability techniques 

might isolate "concept neurons" for knowledge and ignorance. Preliminary experiments 

have already identified dimensions in the latent space that, when amplified, cause the model 

to act as if its partner is omniscient, and when suppressed, cause it to act as if its partner is 

oblivious. This aspect suggests an intriguing variety of belief attribution that needs further 

exploration studies. 

 

9.2 Attention/activation analyses and representational similarity 



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025 
 

                                                                                                                                 Pag. 397 / 444 
Article’s total number of pages: 45 

Attention patterns and activation geometry provide a second view on perspective encoding. 

Our approach links claims to confirmation with explicit grounding tags, enabling us to trace 

which parts of the input a model focuses on when making decisions that depend on others’ 

beliefs. Analysis of attention weights at belief-critical moments reveals targeted 

information retrieval. For instance, when an agent A decides whether to inform agent B 

about an object, certain attention heads in a well-performing model strongly focus on the 

input segment indicating B’s awareness. If the conversational history contains the sentence 

("B did not see the coin") an attention head in A’s model locks onto "did not see" when A 

considers mentioning the coin. We interpret this as the model retrieving the fact of B’s lack 

of knowledge of the respective fact in order to inform its action, a process analogous to 

human recollection. Representational similarity analysis further illustrates the model's 

internal organization. By measuring the cosine similarity of high-dimensional hidden states 

across different conditions, we have found that scenarios with the same underlying belief 

structure cluster together in latent space.  

For example, all situations where "A knows X, B does not" yielded similar activation 

patterns, which were distinct from those where "both know X". This clustering indicates 

that the model’s internal representation space is organized by others’ mental states, not just 

by superficial input features, another characteristic of a ToM-like internal model. When we 

perturbed an input by rephrasing a sentence without altering the belief structure, the model’s 

activations at decision points remained highly similar. This sensitivity to core belief facts 

over lexical details strengthens our confidence that the model processes the actual content 

of who observed what. Quantitatively, we found that the factor "partner knows/does not 

know" could explain a significant portion, approximately 20%, of the variance in one 

layer’s representations. In contrast, a change in wording explained less than 5% of the 

variance. We also identified a subset of neurons whose activations correlated strongly (𝑟 > 

0.8) with key belief variables. Intervening on these neurons by forcing their activation high 

or low caused the agent’s behavior to change accordingly. Forcing a "partner knowledge 

neuron" to a high value caused the agent to cease providing information, as if assuming the 

partner already knew. These findings reinforce the conclusion that our models, particularly 

the larger ones, have formed a distributed model of other agents within their weights. 

 

9.3 Causal interventions (ablate heads/neurons, patch activations) 

Correlations and geometries are not for the time being mechanisms. In order to establish 

causality, we have performed targeted interventions on the components identified in our 

previous analyses, such as specialized attention heads and neurons strongly correlated with 

belief states. We then modified or removed these components and measured the effect on 

performance. For instance, after identifying an attention head in layer 18 that was critical 

for belief reasoning, we ablated it by zeroing out its output. The agent’s performance on 

communication tasks dropped significantly. Qualitatively, the agent’s messages became 

less relevant, sometimes over-explaining and other times under-explaining, as if it had lost 

track of its partner’s knowledge. Tasks that did not require perspective-taking, such as 

solving a puzzle alone, were unaffected, confirming the head's specific role. We also 

employed activation patching, where we recorded the activations from a successful run and 

injected them into a failing run at key layers. This intervention markedly improved the 

failing run’s behavior, as if providing it with the "right thought" mid-task. Conversely, 
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injecting activations from a failing run caused a successful one to fail. This suggests that 

the information contained in those activations causally influences success. 

At the neuron level, we have systematically set the top ten neurons most correlated with a 

belief inference to average values corresponding to the opposite belief. This intervention 

flipped the agent’s decision approximately 30% of the time in borderline cases, suggesting 

these neurons collectively carried a substantial part of the decision logic. An aspect from 

another causal test further illustrates this point, namely we have swapped the internal states 

of two models mid-episode, one skilled at deception and one not. The weak model, endowed 

with the good model’s state, executed a clever bluff which it had never performed before. 

This confirms that the strategy was latent in the hidden state and that these representations 

carry transferable, semantically meaningful information. Sanity checks involving random 

interventions produced no systematic change in ToM behavior, confirming our targeted 

components were indeed key elements. 

 

9.4 Error taxonomy, confabulated mental states, mind-blind spots, social heuristics 

Interpretability serves not only to explain success but also to understand failure. By 

collating and examining the models’ errors, we have developed a taxonomy that delineates 

the boundaries of the current ToM capabilities and reveals where apparent success might 

mask underlying deficiencies. Our qualitative analysis identified several recurring error 

patterns. The first involves confabulated mental states, where the model acts as if another 

agent possesses knowledge it does not, or vice versa. This often corresponds to misreading 

or forgetting a negation and points to failures in representation, particularly under high 

cognitive load or over long sequences. A second, more profound failure manifests as mind-

blind spots, moments where the model treats another agent like an object rather than a mind. 

For example, a model might repeat a proposal verbatim despite clear indications of its 

partner’s misunderstanding. These failures correlate with instances where the model’s 

attention focuses almost entirely on its own goal, effectively ignoring the partner’s state, 

often triggered by out-of-distribution events.  

Many errors appear from the misapplication of social heuristics, which are simplified 

strategies that the model applies inappropriately because it fails to model the context deeply 

[49]. A model might, for instance, adhere to a learned heuristic of honesty in a competitive 

game where deception is optimal. This reliance on learned social norms becomes a liability 

when strategic violation is required. Systematic coding of failures into these categories 

revealed correlations with experimental conditions. Confabulations were common when 

memory capacity was limited. Mind-blind spots occurred in response to unusual partner 

behavior. Heuristics dominated early training phases and in models that had overfit to a 

particular strategy. Each error type suggests a corresponding chance for improvement, 

namely better memory mechanisms for confabulation, more diverse training for mind-

blindness, and more nuanced instruction to overcome faulty heuristics. This taxonomy 

reveals that current models often default to rough patterns rather than calculating others’ 

mental states anew each time. The impression of their understanding can be shallow and 

rigid, cracking under stress testing. 
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9.5 Distinguishing genuine ToM from dataset heuristics and memorization 

The core scientific risk in this study is mistaking clever performance for genuine belief 

reasoning. Our methodology relies on careful experimental design, process controls, and 

stress testing to differentiate intrinsic ToM abilities from the mere appearance thereof. An 

analysis involved testing how models handle task variants that break common patterns. Less 

capable models failed when a story was told out of chronological order, suggesting a 

reliance on superficial sequence patterns. More capable models performed well despite 

variations in narrative style, indicating that they were not simply reciting a learned script. 

We have also studied whether models might have memorized specific training instances. 

While we found no direct matches for our novel evaluation scenarios in the pretraining 

corpus, models have certainly been exposed to countless narratives involving character 

knowledge. In order to test for shallow pattern matching, we have designed scenarios that 

subvert typical story recurrent topics. The models struggled in these cases, implying a 

reliance on common narrative patterns. 

Process metrics, such as the quality of a model's justifications, provide another layer of 

defense. A model might arrive at the correct answer for the wrong reason [50]. By 

examining its chain-of-thought, we can infer its rationale and discount successes that result 

from flawed reasoning. We have further designed "leap of faith" situations where only 

genuine belief modeling, not a simple heuristic, would lead to success. The superior 

performance of better models in these scenarios provides confirmation that they are not 

purely running on simplistic rules. We assert the emergence of ToM-like behavior in an 

operational sense, not that the models possess a conceptual, human-like understanding. 

They likely lack a coherent "theory" and instead approximate its results through learned 

statistical associations. Their abilities are most apparent when situational cues in a game 

context guide them, namely when asked a tricky ToM question abstractly, they may fail. 

Therefore, we caution that our results demonstrate simulated ToM performance, not 

necessarily simulated ToM understanding. The former could arise from high-order 

correlations in training data, whereas the latter requires genuine inference. Our out-of-

distribution tests provide confidence that our best-performing models have at least a 

conditional, limited inferential ability. Our analysis triangulates the presence of genuine 

against false ToM capabilities. We find evidence of something real and foundational, but 

we have also found clear evidence of its limits. The truth lies between the extremes of over-

claiming and under-claiming, namely some foundational elements of ToM have emerged, 

but they function within a framework that is still bound by the model’s training distribution 

and lacks the full generality of human cognition. 

 

 

10. Conclusions 

This work advances the study of Theory of Mind (ToM) in artificial systems from 

subjective observation towards a cumulative, falsifiable science. We have introduced a 

multi-agent simulation framework that operationalizes ToM, compelling agents to infer and 

manipulate the beliefs of others in order to achieve goals under conditions of partial 

information. Our results present a cautiously optimistic perspective, revealing that current 

large language models, when situated in interactive roles, exhibit a nascent capacity to 
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reason about others' mental states. These models can detect a partner's false belief and 

subsequently act to correct it in cooperative settings or exploit it in competitive ones. This 

emergent capability scales with model size and training breadth, and its internal 

representations correlate with the epistemic states of other agents, suggesting a move 

beyond simple heuristics. 

These abilities, nevertheless, remain fragile and are far from human-like. The agents fail on 

higher-order belief reasoning, and their success in our simplified microworlds does not 

guarantee that these skills will scale to the nuanced complexity of authentic human social 

environments. This question of external validity is a primary limitation. Our study was also 

deliberately focused on cognitive ToM, the inference of knowledge and beliefs, while 

leaving affective ToM, which concerns emotions and desires, outside its scope. Therefore, 

we measured a specific ability under controlled conditions, acknowledging that genuine 

understanding remains distinct from sophisticated mimicry. Our claims must be interpreted 

within this specific context, signifying that a model can manage particular interactive tasks 

requiring belief-tracking, not that it possesses a human's intuitive and holistic ToM. 

This functional conceptualization of ToM introduces a significant dual-use dilemma. The 

same aptitude that allows an AI to be a more intuitive collaborator or a more effective 

instructor also enables it to become a potent tool for manipulation, deception, and social 

engineering. An AI that can model human beliefs with precision could be deployed to tailor 

misinformation with unparalleled efficacy or breach privacy by inferring unshared 

insecurities from subtle behavioral cues. These risks emphasize the necessity of embedding 

robust ethical guardrails into these systems, such as mandatory honesty policies, 

transparency, and user consent protocols. As AI systems develop more sophisticated social 

cognition, there is an extremely important need for public education and regulatory 

oversight to mitigate the risks of misplaced trust and to ensure that these technologies are 

aligned with human values. 

Our methodology and findings open several paths for future research studies. Immediate 

directions include expanding the framework to richer modalities, such as integrating vision 

to test an agent’s ability to coordinate linguistic and visual information. Another path 

involves exploring targeted architectural improvements and specialized training curricula 

to address observed bottlenecks, such as higher-order reasoning. Advancing our 

preliminary interpretability analyses could allow for the identification and even editing of 

neural subcircuits responsible for belief reasoning or deception, a very important step for 

AI safety. Ultimately, our work establishes a baseline and a paradigm for quantifying social 

reasoning in AI. The path toward machines with a robust ToM is emblematic of AI's broader 

challenge, in the sense that it forces us to formalize what is often taken for granted in human 

intelligence. The goal is to create machines that understand human mental states sufficiently 

as to be effective and trustworthy collaborators, a pursuit that requires parallel advances in 

model architecture, training strategies, and ethical alignment. 
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