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Abstract

The ability to reason about others' mental states, known as Theory of Mind (ToM), is an
important aspect of social intelligence. Nevertheless, quantifying its emergence in
foundation Al models has been hampered by methodological flaws in existing static
benchmarks. Current evaluations often rely on single-turn vignettes that are susceptible to
dataset contamination and shortcut solutions, making it difficult to distinguish genuine
belief reasoning from superficial pattern matching. This paper proposes a multi-agent
simulation framework to address this challenge. We embed foundation models as agents in
interactive, partially observable environments where success is causally contingent on
tracking, inferring, and manipulating others' beliefs. The framework operationalizes ToM
through dynamic task families, including false-belief, deception, and coordination games,
that make nested belief reasoning very important and necessary for achieving goals.
Significantly, this aspect goes beyond purely behavioral outcomes by instrumenting process
evidence, such as the alignment of an agent’s reported beliefs with ground-truth epistemic
states and its subsequent actions. The proposed approach separates intrinsic model
competence from the effects of performance artifacts and inference-time scaffolding. The
primary contributions are operational semantics for ToM in artificial agents, a suite of
belief-critical tasks, and a measurement protocol that integrates outcome success with
process-level validation. Applying this framework reveals that while current models exhibit
measurable and partially robust first-order ToM-like capabilities, higher-order reasoning is
more fragile and strongly dependent on model scale, context, and structured deliberation.
By providing an auditable, reproducible, and adversarial robust evaluation substrate, this
work establishes a principled methodology for quantifying how and when social cognition
emerges in artificial agents, moving the field from unreliable claims toward a cumulative,
empirical science.
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1. Introduction

In order to engage in rich social interactions, artificial agents must be capable of attributing
beliefs, desires, and intentions to others. This capacity, known as Theory of Mind (ToM),
is an important element of human social cognition [1]. A pressing question is whether large-
scale foundation models, trained on broad internet data, exhibit a comparable ability and, if
so, under what conditions and through which mechanisms. Early claims of ToM-like skills
in such models have been contested, with critiques suggesting that success on evaluation
tasks could arise from dataset artifacts, prompting strategies, or superficial pattern matching
rather than genuine belief reasoning. Therefore, the field faces a dual challenge, namely, to
establish careful operational definitions of ToM suitable for artificial agents and to create
evaluation environments that elicit true belief reasoning instead of allowing shortcut
solutions. This work addresses both needs by proposing a framework for measuring when
and how social-cognitive skills emerge in Al.

1.1 Motivation and research questions

The drive to quantify ToM in foundation models is motivated by theoretical,
methodological, and practical considerations [2,3]. Theoretically, it explores whether large-
scale, self-supervised training on human data can induce the latent structures necessary for
belief reasoning, a subject of open debate in cognitive science. Methodologically, existing
ToM tests for Al often contain serious pitfalls, many rely on simple story puzzles or
prompted questions that models might solve via shortcuts, casting doubt on claims of
genuine mental state attribution. Practically, foundation models are increasingly deployed
in interactive roles where they must infer user intent, negotiate with other agents, or
coordinate under partial information. Robust measures of social reasoning are therefore
essential to ensure these systems behave safely and predictably [4,5]. Guided by these
motivations, our research investigates whether foundation models exhibit ToM-like
competencies and, if so, under what conditions. We examine how this capability scales with
model size or improves with interaction. A very important goal is to design tasks that
necessitate belief reasoning, thereby revealing its presence or absence with high fidelity.
Ultimately, our framework is engineered to distinguish genuine belief attribution from
clever but still shallow heuristics or memorized patterns.

1.2 Contributions and scope

This article offers a unified conceptual and experimental framework for studying the
emergence of ToM in foundation models [2,3], comprising construct definition, task
creation, and rigorous evaluation . Our first contribution is to operationalize ToM for
artificial agents by providing precise definitions for different levels of belief reasoning and
by clarifying what constitutes evidence of such capabilities. In order to elicit and test these
abilities, we introduce a suite of interactive multi-agent simulation tasks, including false-
belief scenarios and deception games, designed so that success requires the inference and
manipulation of others' hidden mental states. This design prevents solutions based on

superficial pattern matching. In complementing these tasks, we develop a comprehensive
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measurement protocol that combines outcome-based metrics with process-based analyses
of an agent’s decision-making, offering deeper insight into its reasoning. Finally, through
extensive experiments, we map the conditions under which ToM-like abilities appear in
foundation models of different scales. Our empirical findings show that while current
models exhibit some robust first-order ToM, higher-order reasoning remains fragile, and
we identify the factors that influence this performance. Together, these contributions
advance the study of social cognition in machines and lay the groundwork for a more
rigorous science of machine ToM.

1.3 Definitions of ToM, emergence, foundation models

In order to ensure clarity, this work adheres to precise definitions for its core concepts. We
define ToM as an agent’s operational ability to represent and reason about the mental states
of others, using these representations to inform its actions. This capacity is treated as a
graded property, observable through behavior, rather than as a monolithic trait. The term
emergence refers to qualitatively new capabilities that manifest at a certain scale of model
complexity, surpassing extrapolations from smaller models. In order for a capability to be
considered emergent, it must be reproducible and robust. We also distinguish an agent’s
intrinsic competence from performance enhanced by external scaffolding, such as memory
buffers or planners. Foundation models are the large-scale, pre-trained neural networks that
serve as the cognitive core for the agents in our simulations. Our framework explicitly
separates the abilities of the base model from the contributions of its surrounding
architecture.

1.4 Overview of approach and findings

The subsequent sections of this paper systematically unfold our framework (Figure 1). We
begin by situating our work within the existing literature before formally defining the
problem and our central hypotheses. We then detail the multi-agent simulation environment
and agent architecture developed to test these hypotheses. Following this, we describe the
specific evaluated foundation models and the comprehensive protocol used for their
assessment, including our proposed metrics and statistical methods. Moving forward, the
paper presents our experimental results, makes a deeper analysis of model behaviors and
failure modes, and puts forward a discussion of the broader implications, limitations, and
ethical considerations of our findings. We conclude by detailing our commitment to
reproducibility and outlining future research directions.

Our results provide a nuanced picture of ToM in current foundation models. We find that
agents can achieve non-trivial performance on tasks requiring first-order belief reasoning,
such as tracking another agent’s knowledge to succeed in a cooperative endeavor.
Nevertheless, robust higher-order ToM, which involves reasoning about nested beliefs,
remains largely unattainable with current capabilities. While larger models and specific
scaffolding techniques yield performance gains, we also demonstrate that these apparent
abilities are often fragile, diminishing significantly under adversarial or out-of-distribution
conditions. These findings emphasize both the promise and the current limitations of
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artificial social cognition, reinforcing the very important need for the principled evaluation
framework we propose [6].

Flowchart of the Proposed Multi-Agent Simulation Framework for ToM
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2. Background and Related Work
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Pag. 367 / 444

Article’s total number of pages: 45




Journal of Information Systems & Operations Management, Vol. 19.2, December 2025

The modern research program on Theory of Mind (ToM) originates in Premack and
Woodruff’s seminal question, "Does the chimpanzee have a theory of mind?", which
stimulated the study of mental state attribution in non-human agents [1]. In parallel,
extensive research in developmental psychology has documented the trajectory of human
ToM capabilities, exemplified by a child’s comprehension of false beliefs around preschool
age, classically assessed with the Sally-Anne test [7]. Persistent debates in cognitive science
address whether human ToM is powered by a specialized innate component, a learned
theory-building process, or a simulation of others’ minds. These foundational insights
inform the evaluation of artificial intelligence. Validating claims of artificial ToM requires
grounding them in rigorous tasks and criteria analogous to those used in human studies.
Furthermore, developmental delays in ToM, such as those associated with comparative
primate studies suggest the involvement of specific cognitive mechanisms [8]. This raises
the question of whether an artificial system, lacking analogous evolutionary and
developmental structures, can attain similar abilities or is destined to fail in comparable
ways.

2.2 Computational models of ToM and belief modeling

These psychological inquiries encouraged efforts to formalize the mechanisms of mental
state attribution within computational frameworks. Influential approaches in Bayesian
cognitive science treat ToM as a form of probabilistic inference, where an agent maintains
a model of others’ mental states and updates it based on observations, as seen in rational
speech-act models of communication [9]. For instance, an agent might infer another’s goal
or knowledge by observing its behavior. Other research traditions have explored logic-
based systems like dynamic epistemic logic to formally capture knowledge updates, as well
as recursive agent models such as the Interactive Partially Observable Markov Decision
Process (I-POMDP) formulation, which extends planning to multi-agent belief reasoning
by explicitly incorporating nested beliefs into an agent’s decision model [10—12]. While
these computational models provide normative blueprints for ToM, they typically involve
hand-crafted representations or operate in simplified settings, unlike the large, inductively
learned models studied in this work. In order to address different aspects of ToM, our
framework therefore includes parameterized task families, each procedurally generated to
prevent data contamination and designed to make a specific order of belief reasoning
necessary for success (Table 1).

Task Family Primary ToM Core Mechanic Key Perturbation
Target
False-Belief and | First-Order Asymmetric Knowledge
Perspective- Belief Tracking observation of | Swaps:
Taking object movement | Exchanging agents'
or visual | private observation
histories while
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occlusion in an | keeping surface text
interactive world. | identical.

Deception and | Second-Order Misaligned Payoff Matrix

Signaling Games Strategic payoffs in a | Inversion:

Reasoning cheap-talk game | Flipping incentives
where a sender's | from cooperative to
message competitive to test
influences a | strategic
receiver's action. adaptation.

Coordination and | Belief-Guided Partially Partner

Negotiation Joint Planning observable Heterogeneity:
environments Introducing
(e.g. mazes, | partners with novel
resource or out-of-
allocation) distribution
requiring communication
common ground | styles.
formation.

Communication- Pragmatic and | Imposing costsor | Bandwidth

Constrained Belief-Sensitive bandwidth limits | Ablation:

Settings Communication on messages, | Systematically
forcing efficient | varying message
information length  limits to
transfer. measure pragmatic

compression.

Table 1: Overview of ToM Task Families and Their Epistemic Demands

2.3 Emergence in large-scale models

The advent of such large-scale models has prompted claims of emergent abilities, which
are capabilities that appear to surface once models reach a certain threshold of complexity
or training size. Some researchers report that qualitatively new skills, including social
reasoning, manifest suddenly as model size increases. An alternative perspective contends
that many such instances of emergence are continuous performance gains misconstrued as
discrete jumps due to coarse evaluation functions, dataset composition, or the long tail of
task difficulty [13]. This view posits that apparent emergence is an artifact of nonlinear
metrics or naive extrapolations of scaling curves. We treat emergence as a falsifiable
hypothesis about patterns in our data, seeking evidence that ToM-relevant competence
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exceeds what naive scaling expectations would predict. Indeed, some scaling-law studies
have found smooth, power-law improvements rather than strict discontinuities, suggesting
many so-called emergent behaviors might simply require more fine-grained analysis.
Nonetheless, the observation that certain abilities, like solving specific logic puzzles, appear
to manifest only beyond a large parameter threshold keeps the discussion open. This stance
shapes our experiments and their interpretation, namely any reported emergence is
supported by statistical evidence beyond a simple parameter-performance curve and
validated through replication and perturbation tests.

2.4 Multi-agent simulation for studying social cognition

Investigating such complex cognitive phenomena necessitates robust experimental
paradigms. Interactive multi-agent simulations provide a promising opportunity to study
social intelligence, creating dynamic scenarios where agents with partial information must
interact over time [14,15]. Unlike static question-answer tests, these environments enable
the study of communication, cooperation, deception, and the formation of shared
conventions. Prior work has demonstrated that multi-agent environments can encourage
emergent behaviors like tool use and novel communication protocols.

In the case of ToM research specifically, simulations offer a very important advantage,
namely the ground-truth mental states of agents are known to the experimenter, allowing
for objective measurement of whether an agent is successfully tracking what others know
or believe [16]. This approach inspired our framework, which embeds models in
environments designed to require belief reasoning, leading to reproducible data on their
social cognitive performance. The use of multi-agent games also permits repeated trials
under slightly varied conditions, which is extremely important for distinguishing consistent
ToM competence from fortuitous guesses or overfitting [17].

2.5 The strengths and pitfalls of existing ToM evaluations for LLMs

The controlled, dynamic nature of multi-agent simulations stands in contrast to many
existing ToM evaluations for large language models (LLMs) [17-19]. The question of
whether LLMs possess ToM has led to a wave of evaluation attempts, often using classic
false-belief stories or social vignettes. Although prompting techniques like chain-of-
thought reasoning can elicit seemingly correct answers, these successes are difficult to
interpret. An LLM might arrive at the right answer by leveraging superficial patterns or by
recalling similar examples from its training data [18,19].

Reports of advanced ToM in certain models have been contested by findings that slight
rephrasings or novel scenarios degrade performance, suggesting a fragile grasp of others’
mental states. Existing evaluations are frequently one-off and brittle, lacking controlled
difficulty or safeguards against data contamination. This methodological heterogeneity
complicates efforts to ascertain whether a given model genuinely possesses ToM-like
abilities or is merely exploiting shortcuts. These limitations motivate our controlled,
simulation-based evaluation, which aims to provide stronger, auditable evidence regarding
belief reasoning in Al. By engaging models in interactive, multi-turn tasks with verifiable
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belief dynamics, while also ruling out data contamination and providing robust analysis
protocols, we seek to obtain a clearer picture of their social reasoning capabilities [20].

3. Problem Formulation
3.1 Operationalizing ToM (first-order, higher-order, recursive belief states)

This section establishes a formal framework for measuring Theory of Mind (ToM) in
artificial agents, specifically those instantiated as policy wrappers for foundation models.
The framework specifies the construct, the setting for its elicitation, and the conditions for
interpreting measurements as genuine belief reasoning rather than as artifacts of surface
pattern matching. This formulation aligns with the multi-agent simulation program where
belief-dependent incentives, controlled partial observability, and instrumented
communication render mental-state inference causally necessary for success. The entire
approach is anchored by several foundational commitments. ToM is conceptualized as a
graded, operational construct, distinct from a metaphysical attribute. Emergence is defined
by robust, out-of-sample regularities, not by rhetorical discontinuities [19]. Valid
measurement must integrate behavioral outcomes with underlying processes. Any claims
must be falsifiable through perturbations that selectively impair belief-based solutions
while leaving heuristic shortcuts intact. These principles ground the formalism and ensure
its scientific rigor.

The formal specification begins by situating agents within a partially observable
environment, modeled as a stochastic game, where each possesses unique observations and
knowledge. An agent’s first-order belief is its internal estimate of the world's state, or task-
relevant hidden information, given its observations. A second-order belief represents an
agent’s model of another agent’s belief about the world. This recursion extends to higher-
order beliefs, such as what one agent thinks another knows about its own knowledge. While
a fully capable agent would theoretically maintain a nested model of others' mental states,
the intractability of representing infinite recursive beliefs necessitates a functional
approach. We therefore design tasks where optimal actions are contingent upon tracking
the beliefs of others. An agent that consistently succeeds in these tasks is inferred to be
leveraging the necessary belief-reasoning capabilities [8].

The methodology hinges on embedding carefully designed epistemic tests within the
environment. These tests create situations where two scenarios are physically identical but
differ in what another agent knows. An agent lacking ToM would perceive and act within
these scenarios identically. A ToM-capable agent, however, would behave differently in
response to the distinct epistemic conditions. We therefore consider ToM to be
operationally present when an agent’s policy is sensitive to others’ mental states. This
sensitivity is confirmed if the agent's behavior changes precisely in situations where
another’s beliefs differ, even when the observable state of the world remains constant.

We adopt a minimal but expressive mathematical setting, namely a partially observable
stochastic game with communication, because it canonically separates physical state
uncertainty from epistemic state uncertainty and because it allows the faithful encoding of
"who" knows "what", and "when". Let G denote a game with finite or countable horizon T,
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aset of agents A = {1, ...,n} a hidden world state s; € S at time t, and, for each agent i, an
observation function 0;: § X € = 0; mapping from the world state and recent events ¢ to a
private observation Of. Agents choose actions a} € A; and may emit messages m{ € M;
according to a communication protocol II that specifies turn-taking, admissible content, and
grounding conventions. The environment evolves via a transition kernel
P(s¢41lse, al, ..., al). Rewards rf are assigned according to payoff functions that we
intentionally couple to belief-relevant latent variables in order to manage the measurement
of ToM.

In such a game, an agent’s epistemic state is a distribution over latent variables given its
. . . t . .
observation-message history. We write hf = (0 <T’ m<t, a<t) for the history available to

agent i at time t under the protocol II. The agent’s first-order belief about the world is a
posterior b (s) = Pr(s, = s|h}). A Theory-of-Mind-capable agent maintains, explicitly or
implicitly, higher-order beliefs about other agents’ first-order beliefs, and potentially about

their higher-order beliefs in turn. Let bl ; denote i's belief over j’s first-order world belief

bi,;(b) = Pr(bjt = b|h{). More generally, we define a recursive tower of beliefs Bi(k)'t of

order k, where Bi(l)’t = b} and Bi(z)'t = b}, . for some j # i. Higher orders follow by

i-j
(k+1),t
Bi

induction, with a measure over others’ Bj(k)'t. Because explicit maintenance of full

recursive distributions is intractable, we measure competence functionally, namely does the
policy m; select actions and utterances whose expected utility cannot be achieved without
tracking certain beliefs to a specified order under the game’s identifiability structure? The
problem formulation therefore relies on tasks in which action values Q; (hit, a) are provably

sensitive to the content of Bi(k)'t even after conditioning on Bi(l)'tfor l<k.

In order to avoid confounds from purely world-state prediction, we engineer information
asymmetries and intervention points where two histories hf and h'¢ induce the same first-
order world posterior b} but differ in the distribution over another agent’s beliefs b, j and

where the optimal a differs across hf and h’¢. In such "epistemic disentanglement" regimes,
performance demands sensitivity to others’ beliefs. Communication protocols introduce
pragmatic pressure, namely in cooperative tasks, a message is informative if and only if it
reduces the entropy of the receiver’s posterior over task-relevant variables. In competitive
tasks, beneficial deception requires inducing a targeted misalignment between the
receiver’s posterior and the ground truth. The formal problem is therefore to determine,
from behavior and process traces, whether a model wrapped as m; leverages recursive belief
information when such leverage is required by the incentive structure. This formulation is
consistent with the article’s stance that ToM is graded and operational and with its
insistence on multi-turn interaction under partial observability to produce belief-sensitive
behavior. These scenarios give us built-in controls for testing ToM. Consequently, we can
systematically flip who knows what in otherwise identical trials and find out if the agent
correspondingly flips its behavior.

3.2 Hypotheses and falsifiable predictions
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Our formulation produces concrete, falsifiable predictions regarding the manifestation of
ToM-like abilities. We hypothesized that first-order belief reasoning would be attainable
for current large language models [19], particularly with appropriate interaction protocols,
whereas reliably handling second-order beliefs would present a significant challenge. This
tiered-difficulty hypothesis predicted that performance would decline sharply with each
increase in required reasoning, with second-order tasks producing results at or near chance
levels. We also advanced a scaling hypothesis, positing that larger models would
substantially outperform smaller ones on belief-critical tasks, suggesting that social
reasoning capabilities emerge at scale, albeit with diminishing returns at higher orders of
inference [21].

Further predictions concerned the experimental conditions. We anticipated that forcing
agents to communicate and coordinate would reveal more pronounced performance
differences, with failures emerging in tasks requiring subtle pragmatic inference or
deception [22,23]. A scaffolding hypothesis proposed that agents equipped with support
mechanisms, such as chain-of-thought reasoning or memory tools, would achieve higher
ToM scores than those relying solely on base model responses. In order to assess whether
observed competence was intrinsic, a robustness hypothesis stipulated that genuine ToM
should remain stable across variations like paraphrased scenarios or randomized partner
behaviors. Consequently, a significant performance drop under such perturbations would
indicate a reliance on brittle shortcuts. All hypotheses were pre-registered where possible
in order to ensure our analysis rigorously sought to falsify these predictions .

3.3 Threat models and need for valid ToM measurements

Our measurement approach was designed to guard against several ways an Al system might
simulate ToM without genuine ability [24]. A primary threat is shortcut exploitation, where
a model leverages pretend cues memorized from training data. In order to counter this, our
task generators produce numerous scenario variations with different surface details,
preventing simple pattern recognition. Another threat is overfitting to a partner’s behavior,
where an agent learns a fixed response script that works by coincidence. We mitigate this
by randomizing partner policies and roles, forcing the agent to adapt rather than rely on
static assumptions. We also prevent information leakage by ensuring each agent’s
observations are strictly private, and that controlled communication channels do not
inadvertently reveal hidden knowledge.

These safeguards inform our core design decisions. The principle of partial observability
ensures agents never have direct access to each other's private information [25]. Tasks are
built around informative interactivity, requiring information exchange or observation for
success. The methodology includes counterfactual tests, such as swapping which agent
holds a very important piece of knowledge, in order to verify that behavior changes
appropriately. In addition, role symmetry, achieved by having agents swap roles across
trials, ensures that strategies are not tied to superficial identity cues [18]. We also address
the risk of training data contamination by using novel scenarios and studying any
exceptional performance on tasks that resemble known puzzles [17]. The evaluation
environment itself is used to log all information an agent receives, enabling audits that
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confirm no hidden channel provides a shortcut to the solution. These combined measures
ensure that high performance is attributable to effective mental state inference.

3.4 Construct, internal, and external validity criteria

We have specified precise criteria to ensure our measurements of ToM are valid and
meaningful. Construct validity, which confirms that our tasks capture the essence of ToM,
was established by aligning them with classic psychological paradigms like false-belief
tests. The tasks were designed so that success requires belief reasoning, precluding
solutions based on simple heuristics or lucky guesses.

Internal validity, the basis for drawing causal conclusions, was addressed through tight
experimental controls [26]. We employed ablation studies to observe whether removing a
key component, such as memory or communication, degrades performance in a manner
consistent with the loss of ToM reasoning. We further enhanced internal validity through
pre-registered analyses, appropriate statistical models, and adversarial trials that test
whether apparent skills are robust under stress. These practices collectively separate
genuine abilities from experimental artifacts.

External validity concerns the generalizability of our findings beyond the specific
simulation [27]. While our multi-agent games are abstractions, they capture core dynamics
of belief reasoning. We acknowledge their limitations, namely success in this controlled
world does not imply a full understanding of human beliefs in open-world settings, which
involve richer social cues. In discussing our results, we carefully differentiate between
abilities demonstrated within our tasks and the broader complexities of human social
cognition. We are also explicit that passing our tests does not render an Al safe or socially
aligned for deployment. By clearly defining these validity boundaries, we provide a solid
foundation for interpreting the presence or absence of ToM-like behavior in the agents we
study.

4. Multi-Agent Simulation Framework
4.1 Environment design and task families

Our evaluation platform is a custom multi-agent simulation environment, specifically
designed as a partially observable, turn-based world to produce behaviors dependent on
Theory of Mind (ToM). The tasks are configured so that success hinges upon an agent’s
ability to track what other agents have or have not observed [2,3]. Within this shared
environment, multiple agents act based on their own private observations. In order to probe
distinct aspects of belief reasoning, we have developed several families of tasks.

The first family adapts classic false-belief scenarios into interactive games. In a typical
setup, one agent hides an object while another is not observing, and the second agent must
then locate it. The first agent's capacity to predict the other's mistaken belief is tested over
multiple turns as agents move or communicate, requiring a consistent application of ToM.
Another set of tasks explores deception and bluffing, drawing from cheap-talk and costly-
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signaling games. Here, a "sender" agent, who knows a particular truth, benefits if the
"receiver" holds a false belief. The sender's success requires modeling how the receiver will
update its beliefs based on a potentially deceptive message. Conversely, the receiver must
reason about the sender's motives, probing the agents' capacity for intentional deception
and its detection.

A third category involves cooperative and competitive coordination tasks. In cooperative
scenarios, agents with partial information must infer each other's knowledge to achieve a
common goal, such as meeting in a maze. In competitive variants, an agent might exploit
another's ignorance to gain an advantage. These situations demand reasoning about others'
knowledge and intentions in the context of joint action. We study the robustness of these
behaviors in communication-constrained settings. By limiting the number or increasing the
cost of messages, we test whether agents can convey critical information efficiently. These
constraints ensure that emergent communication strategies are genuinely informative and
not merely exhaustive exchanges of data. Beyond these core families, the environment
incorporates further nuances to ensure robust evaluation. We introduce irrelevant distractor
objects to prevent agents from focusing on a single variable and vary tasks between one-
shot and repeated encounters to observe if agents learn and adapt conventions over time.

4.2 Agent architecture and scaffolding

Each simulated agent is implemented as a policy wrapper around a pretrained foundation
model, which functions as the agent's cognitive core. This wrapper manages the flow of
information, feeding the model appropriate inputs and translating its outputs into actions or
messages. The architecture comprises several key components. At each turn, the wrapper
constructs a detailed prompt that provides role context, including the agent’s identity, a
summary of recent events, and output format guidelines. This structured context grounds
the model in the simulation’s state and its designated role. The architecture also includes a
memory buffer for recent observations and actions. Extremely important, an agent's internal
state features a belief model for tracking what it presumes another agent knows.

This model is populated exclusively through inference based on observable actions and
communication, not through privileged access to the simulation's ground truth. This
methodological decisions ensure that successful belief reasoning originates from the
model’s learned capabilities rather than from externally supplied information. In order to
facilitate complex decision-making, the wrapper provides an optional planning scratchpad
where the model can perform private, intermediate reasoning, akin to a chain of thought,
before committing to an action. Agents may also call simple tools to query hypothetical
outcomes. This scaffolding enhances performance on multi-step problems and allows us to
distinguish the base model's unaided capabilities from what it can achieve with external
support by toggling these aids during experiments.

4.3 Communication protocols

Communication between agents is mediated by a structured protocol governing textual
messages, ensuring that all content can be analyzed for its grounding and informativeness
[28]. Each message must adhere to a specific format, including a content string and optional
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references, or grounding handles, that tie a statement to a specific observation. This system
prevents agents from making claims about facts they could not have perceived. The protocol
is further defined by turn-taking rules and an infrastructure that serializes all interactions
into append-only logs with cryptographic checksums, creating an evidential trail for all
claims.

While the protocol provides structure, it is flexible enough to allow for the emergence of
communicative conventions and pragmatic inference. Over repeated interactions, agents
can develop nicknames for landmarks or code words for routine actions, particularly when
communication is restricted or costly. We detect the formation of such conventions by
observing a decrease in message surprisal over time coupled with stable or improved task
performance. Our analysis extends beyond literal content to pragmatics, examining how
agents infer meaning from context. A telling silence, a well-timed interjection in an
interruptible regime, or the frequency of confirmation queries all serve as signals that reflect
an agent’s confidence and shared understanding. These pragmatic and efficiency metrics
ensure that success arises from concise, cooperative information exchange established in
belief reasoning.

4.4 Reward structures and curricula

The environment’s reward schemes are carefully crafted to incentivize belief-aware
strategies [28]. The primary reward is goal-based, such as a positive value for successfully
completing the task. The tasks are designed so that achieving this goal inherently requires
correct belief reasoning. In order to guide learning, we sometimes include auxiliary shaping
rewards, for instance, a small bonus for sending a helpful, truthful message. These shaping
rewards are carefully restricted to epistemically meaningful quantities, like the reduction of
uncertainty in a partner’s inferred belief state and are gradually strengthened as training
progresses so that agent competence ultimately relies on the primary task reward. Our
training regimen combines self-play and curriculum learning.

In self-play, agents from a continually refreshed pool are paired, and their roles are regularly
swapped to prevent the memorization of a specific partner's behavior and encourage the
development of generalizable strategies. The curriculum begins with simple scenarios and
progressively increases in difficulty, introducing more subtle belief states or deeper levels
of recursive reasoning to produce higher-order ToM. In order to promote generalization,
we also employ extensive domain randomization. Superficial elements of the tasks, such as
room layouts, object names, and agent identifiers, are varied widely across episodes. This
randomization, combined with a default policy of resetting the state after each episode,
ensures that learned behaviors are a response to the latent epistemic structure of the tasks
rather than an overfit to surface features. These practices collectively ensure that any
emergent ToM-like behavior is a robust response to the task's fundamental demands.

5. Models and Training/Inference Regimes
5.1 Foundation models evaluated (sizes, training data, modalities)
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Our evaluation encompassed a spectrum of state-of-the-art foundation models, which
served as the cognitive cores for our agents [2,3]. This selection included large language
models of varying scales, from several hundred million to tens of billions of parameters,
trained on diverse textual corpora [17,19]. The models represented different architectural
families, including those based on the GPT architecture and other Transformer variants.
Our collection ranged from models trained exclusively on text to those with limited
multimodal pre-training in vision and language. Although our primary focus was on text-
based reasoning to align with the textual nature of our tasks, we considered whether
multimodal models might offer intrinsic advantages, given that human Theory of Mind
often integrates visual cues. All models were initially employed in their pre-trained state
without task-specific supervised fine-tuning to assess their zero-shot capabilities on these
novel interactive challenges.

The model pool included a 350-million-parameter Transformer LM [29] pre-trained on
internet text, a 6-billion-parameter model with a similar training regimen but greater
capacity, a large 70-billion-parameter model featuring extensive instruction-tuning, along
with a representative multimodal model capable of processing image-like inputs. For our
text-based simulations, the multimodal model functioned equivalently to its text-only
counterparts. We verified to the best of our knowledge that each model possessed general
world knowledge and language proficiency but had not been specifically trained on our
tasks or on simplistic Theory of Mind puzzles[30] .

5.2 Prompting strategies (zero-shot, few-shot, role prompting, tool-augmented)

We systematically varied the prompting strategies used to guide model behavior [7,31]. In
the zero-shot configuration, the agent received only the minimal context of its observations
and the game state in natural language, compelling it to act based on its pre-trained
knowledge alone. We also implemented few-shot prompting, where the model was
provided with one or more complete example episodes demonstrating belief-aware
behavior before it attempted a new task. This method helps the model recognize the required
pattern of reasoning about others. Furthermore, we emphasized role prompting, which
explicitly informed the model of its identity and objectives as described in Section 4.2. A
prefix such as, "You are a hider. Your partner is a seeker. You want them to have a false
belief about where the treasure is", effectively primed the model for a strategy of deceptive
communication.

For certain conditions, we augmented the prompts with tools or a scratchpad, allowing the
model to "think" silently before responding or to call external functions like memory
retrieval. These variations enabled us to test how performance gains scaled with
instructional quality versus the model’s intrinsic capabilities. We found that few-shot
prompting frequently enhanced performance on first-order tasks by illustrating the concept
of information sharing or withholding. Tool-augmented prompting proved especially
beneficial in scenarios demanding multi-step planning, where the model could outline a
deceptive strategy in its scratchpad before execution. The design of our prompts required a
careful balance. On one hand, prompts must define roles, goals, and the output schema to
ensure well-formed actions and messages. On the other hand, over-engineered prompts
could inadvertently leak solutions, for instance by stating "remember, the other agent hasn’t
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seen X". We therefore iterated carefully on prompt design to ensure the prompts guided
behavior without revealing answers. The resulting strategies span from minimal role hints
to detailed, step-by-step formats, and we report results across this entire spectrum.

5.3 Fine-tuning and reinforcement learning settings

While much of our analysis treats the foundation models as static, we have also studied
parameter-updating approaches in order to determine if the models could learn Theory of
Mind through direct interactive experience [6,32]. In a supervised fine-tuning framework,
we used interaction transcripts from our simulation, some of which included demonstrations
from an oracle agent exhibiting correct belief reasoning. The language model was then fine-
tuned to better predict the correct outputs in these scenarios, effectively teaching it through
gradient descent on example episodes. Concurrently, we experimented with reinforcement
learning (RL) [33], where task rewards provided direct feedback to optimize the agents'
policies. In these RL sessions, two agent instances played numerous episodes, and the
model's parameters were updated using policy gradient methods to maximize expected
reward.

The fine-tuning approach passes on explicit knowledge of Theory of Mind tasks, namely if
a model initially fails to grasp the significance of another agent's perspective, the fine-
tuning examples make this significant. The RL approach, conversely, allows for the
discovery of strategies beyond the provided examples, as the agent is free to explore any
behavior and receive feedback [33]. However, RL is susceptible to finding local optima.
For example, an agent might discover a simple exploit that wins the game without genuinely
developing Theory of Mind, a possibility our environment design sought to minimize. We
observed that supervised fine-tuning on a small set of demonstration episodes yielded
noticeable improvements in immediate performance, particularly in making the model's
communications more relevant to its partner’s knowledge state, though these improvements
eventually plateaued. With RL training, agents demonstrated further gains on some tasks
after many iterations, indicating they can learn superior policies through self-play.
Interestingly, some RL-trained agents developed novel conventions distinct from those we
might have hand-coded, emphasizing the creative potential of direct goal optimization. We
also noted that RL sometimes produced poor behaviors, such as overfitting to specific
training scenarios, highlighting that generalization remains a challenge without sufficiently
diverse training conditions.

5.4 Decoding, temperature control, and self-consistency

The method by which a model generates its response significantly influences its
performance in multi-agent settings. We examined different decoding strategies for the
language model outputs[3,23]. For example, a higher temperature encourages more
exploratory and diverse responses, which can produce creative solutions but also risks
incoherence. A lower temperature yields more deterministic and conservative responses. In
order to ensure fair comparisons, we generally kept decoding settings constant but tested
the extremes to observe their effects on tasks requiring subtle reasoning. A moderate,
slightly stochastic decoding process proved most effective. Overly deterministic generation
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could cause an agent to fall into a repetitive loop, while excessive randomness could lead
to irrelevant outputs that violate the interaction protocol. In some cases, we also employed
a self-consistency approach. This involved having the model internally generate multiple
potential actions or messages and then select the final output through a voting mechanism
or by choosing the option with the highest confidence. This technique can mitigate random
errors by leveraging the model’s own uncertainty estimates. If a model generated three
potential moves, two of which originated from a correct inference about another agent's
false belief, this method would favor one of those two, thereby amplifying consistent
reasoning.

Decoding choices shape agent behavior as profoundly as parameter count. Parameters such
as temperature, nucleus thresholds, repetition penalties, and stopping criteria all influence
whether an agent’s dialogue is terse or verbose, literal or inventive. We systematically fixed
or swept these parameters as interventions, recorded them in the experimental manifest, and
included them as covariates in our analysis. This practice prevents agents with "chattier"
decoders from gaining an unfair advantage in human-rated metrics and upholds the rigorous
governance we established for our experimental configuration. Careful tuning of the
generation process was very important for reliable performance, confirming that an
apparent cognitive failure could come from the generation process itself rather than from a
fundamental model limitation.

5.5 Safety filters and chain-of-thought handling policies

The inclusion of scenarios involving deception necessitated a deliberate approach to
managing potential conflicts with Al safety and alignment measures [34,35]. Certain large
language models have built-in safety filters that discourage the production of manipulative
or untruthful content [17-19]. In our context, however, misleading another agent is a
legitimate strategic component of a deceptive role. We therefore carefully configured the
models to understand that in-game deception was a permissible part of the simulation. This
involved phrasing prompts to clarify that the agent was playing a character in a fictional
context, framing any "lie" as an action within that context rather than a violation of the
model’s instruction to be truthful. For instance, we added clarifications such as: ("You are
role-playing in a game scenario, statements in the game are not real assertions to the user.").
We ensured that the model’s internal reasoning, or chain-of-thought, was kept private and
that all its public outputs were appropriate. We separated the model’s private reasoning
from its public messages, either by using special tokens or by splitting generation into two
phases by first generating thoughts, then generating the observable message. Log
verification confirmed that no unintended information was leaked, preventing an agent from
accidentally revealing its private notes to its partner.

Strategic deception and persuasion are scientific targets that also raise ethical questions
[36]. In our study, all agents were Al, with no humans involved in gameplay, which
eliminated the risk of human deception. However, when considering deployment, it is
extremely important to ensure that an Al capable of deception in thesetasks does not engage
in dishonesty outside of carefully defined roles. Our experiments, by highlighting how and
when an Al might choose to lie for strategic advantage, may inform the design of future
safety filters. One might implement a policy that prevents deceptive content unless a
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specific flag indicates a permitted simulation scenario. We have balanced safety
considerations with game realism by explicitly delineating the boundaries of deception in
prompts and by technically isolating internal reasoning from external output. This approach
allowed our agents to fully engage in behaviors like bluffing where appropriate, without
violating the principles of safe model deployment. This process also provides valuable
insight into how future Al systems might be gated or contextualized to use their Theory of
Mind abilities in beneficial, rather than harmful, ways.

6. Evaluation Protocol
6.1 Datasets and scenario generation

The evaluation protocol is designed to determine, with the highest practical degree of
internal and construct validity, whether an agent exhibits Theory of Mind (ToM)-relevant
competence within our multi-agent simulations. This objective necessitates carefully
curated scenarios and comparisons. Scenarios are generated through parameterized
programs that vary the surface realization of instances while preserving the latent epistemic
structure essential for ToM. For each family of tasks, we have designed a set of scenario
templates, which function as probabilistic grammars that instantiate diverse settings. For
instance, false-belief tasks might involve objects hidden in boxes, characters moving
between locations, or secrets concerning identities. The generators randomize details such
as object names, spatial arrangements, and event timings, ensuring no two episodes are
identical in their phrasing or layout, even while they structurally assess the same belief-
reasoning construct.

In order to target specific hypotheses, we have partitioned these scenarios into distinct
evaluation sets. One set might contain straightforward false-belief tests to establish a
baseline, while another could introduce additional distractors or require second-order
reasoning for success. These distinct scenario families enable us to study important
questions, such as whether an agent that passes simple false-belief tests can generalize to
more difficult ones, and how its performance compares to agents employing alternative
strategies. Each scenario is labeled with metadata that specifies which agents possess
privileged information, the turn at which a false belief might arise, and the optimal strategy,
such as communication or deception. This metadata is very important for analysis, as it
allows us to stratify results and distinguish episodes that genuinely require second-order
ToM from those solvable with first-order reasoning, thereby ensuring that our summary
statistics are coherent and meaningful.

6.2 Baselines, random scriptable agents, symbolic ToM models, human benchmarks

The interpretation of an agent's performance requires comparisons against a comprehensive
suite of baselines, which anchors our claims across the full spectrum from chance to ideal
performance [18,37]. The most fundamental baseline is a random policy agent that makes
moves or sends messages uniformly at random from the set of valid options. This agent
represents the performance of a system with no task understanding and establishes a lower
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bound, which is often near zero percent success in complex tasks. Afterwards, we
implemented several simple, rule-based heuristic agents designed without explicit ToM. A
heuristic seeker, for example, might always search the last location where it observed the
hider, ignoring the epistemic state of the hider. Similarly, a heuristic communicator might
always be truthful or deceptive depending on the goal. These agents provide mid-level
baselines, namely if our learning agents fail to outperform a naive rule, it indicates they
have not acquired the intended reasoning. In order to define the upper bound of achievable
performance, we include symbolic or optimal ToM models where feasible.

In the case of certain tasks in constrained state spaces, we can design a dynamic Bayesian
network that explicitly tracks all agents' knowledge and selects optimal moves [38]. In other
cases, we use game-theoretic solutions. These "oracle" agents, representing ideal reasoners,
provide a ceiling against which to measure the learned agents' proficiency. We have used
human benchmarks to contextualize performance and have referenced established results
from psychology, such as the typical success rates of children versus adults on specific ToM
problems. In select cases, one can conduct tests with human participants, providing them
with the same information as an agent to confirm that the tasks were indeed solvable by a
mind with ToM. As humans bring a lifetime of social intuition, they provide a "gold
standard" for performance. By comparing our agents against this spectrum of baselines, we
ensure that claims of ToM competence are rigorously grounded. An agent performing near
the heuristic baseline likely uses a simple strategy, whereas one approaching the symbolic
ideal provides strong evidence of nontrivial belief reasoning.

6.3 Ablation studies (memory off, comms off, planning off, role swaps)

Ablation studies form the core of our causal inference, allowing us to attribute observed
behaviors to specific architectural components [39,40]. We conducted a series of these
studies to pinpoint which elements of our agent design truly contribute to ToM-like
performance. In one study, we disabled the agent's memory module and belief tracking,
forcing it to rely solely on the current observation. Performance on tasks requiring memory
of who saw what, such as false-belief scenarios, dropped dramatically. Agents frequently
acted as if others shared their observations, becoming effectively mind-blind. Another
intervention prohibited communication, which revealed the extent to which success
depended on explicit information exchange. In many cooperative tasks, agents that had
previously succeeded with ease became unable to solve the problem, highlighting their
reliance on communication over independent inference. We have also disabled the chain-
of-thought planning scratchpad, compelling the model to produce an action immediately.
This change particularly degraded performance on higher-order tasks, as agents resorted to
greedy, one-step decisions and failed to anticipate the future epistemic states of their
partners. A final ablation involved swapping agent roles to test for generality. Agents
trained with role randomization adapted seamlessly, whereas those trained asymmetrically
often failed when their role was reversed, indicating their learned strategies were not robust.

These interventions, where each agent serves as its own control, allow us to isolate causal
relationships. The resulting performance deltas, analyzed with cluster-robust intervals,
attribute variance to the ablated component. Our findings confirmed pre-registered
hypotheses, for instance, second-order reasoning was far more reliant on the chain-of-
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thought feature, supporting the idea that deeper reasoning benefits from internal
deliberation. We have also supplemented these quantitative findings with qualitative
reviews of transcripts. An agent without memory, for example, would often produce
contradictory information, while an agent without communication sometimes attempted to
signal through its actions, revealing interesting emergent workarounds. These qualitative
differences reinforce the conclusion that each component played a distinct and critical role.

6.4 Generalization tests (novel tasks, out-of-distribution agents, few-shot transfer)

Generalization has been assessed along three primary axes, namely scenario novelty,
partner novelty, and training regime transfer. In order to test for scenario novelty, we have
evaluated agents on variant tasks that were not part of their training curriculum. For
instance, an agent trained on two-room hiding games might be tested on a three-room
version or a conceptually similar card game. We have found that first-order skills, like
tracking who knows what, often transferred well to superficially new contexts, whereas
more complex strategies like multi-turn deception proved more weak. For partner novelty,
we have paired our agents with partners exhibiting behaviors outside the training
distribution, such as a scripted agent with quirky, random actions or an agent from a
different model family. These tests reveal whether an agent's ToM is robust or over-tuned
to its self-play training partners. Results showed a performance dip when facing unfamiliar
partners, indicating that agents had developed specific expectations that did not always
hold. Agents trained with greater partner diversity, however, were more resilient.

We also assess few-shot transfer by providing an agent with a small number of examples
to adapt to a new condition, such as shifting from a cooperative to a competitive game. We
have observed limited but notable adaptability, particularly in larger models, which could
often infer a new rule from a handful of demonstrations and adjust their behavior
accordingly. A final test measures cross-episode generalization by correlating an agent's
performance across structurally similar episodes. High-performing agents demonstrated
strong consistency, reliably solving problems of the same reasoning type, whereas medium-
performing agents were more erratic. Our generalization tests have indicated that the agents
have learned abstract skills, but this generalization is not universal and remains bounded by
their training experiences.

6.5 Cross-lingual and multimodal variants

In order to validate that the measured construct is authentically epistemic rather than purely
linguistic, we have integrated cross-lingual and multimodal evaluations as a core
component of our protocol. [39,41-43] In our cross-lingual experiments, we translated
simulation narratives and agent communications into other languages understood by the
models, such as French. This tests whether an agent's ability is based on conceptual
understanding or merely on pattern-matching English-specific cues. In the case of
multilingually trained models, performance remained strong after translation, with only
slight drops attributable to data distribution differences. This outcome indicates that the
agents grasped the situations at a conceptual level. For multimodal considerations, we
conducted limited tests by supplementing textual descriptions with simple schematic
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images encoded textually. While full visual understanding was beyond our scope, these
forward-looking experiments explore how ToM reasoning could extend to visual
perspective-taking. Even rudimentary spatial information helped agents clarify perspectives
more easily, a finding that aligns with the human reliance on visual cues for ToM tasks.
These cross-lingual and multimodal evaluations are very important for demonstrating the
generality of our findings. They confirm that the measured capability is not language-bound
and lay the groundwork for future work incorporating richer perceptual inputs, such as first-
person visual feeds for each agent.

6.6 Leakage controls and contamination checks

Given that foundation models are trained on vast, heterogeneous quantities, information
leakage presents a significant challenge to experimental validity [30,41,44]. Our protocol
implements controls at the generation, runtime, and analysis stages to ensure models do not
covertly exploit information. During scenario generation, we avoid well-known common
tests and produce multiple variants of each scenario in order to prevent recognition. At
runtime, we strictly enforce observation restrictions, ensuring agents cannot reference
information they have not perceived. The environment automatically flags any output
containing privileged information, which we then mark for further analysis. All interactions
are hashed and timestamped to support post-hoc audits for potential pre-training
contamination. During analysis, we perform contamination checks by searching the model's
known training data for key phrases or structures from our scenarios. When a scenario
resembled a classic example like the Sally-Anne test, we paraphrased it, changed names,
and added extra steps to eliminate one-to-one correspondence. This controlled approach
provides confidence that our results are trustworthy. We are ensuring that positive findings
are registered due to the model's genuine inferential capabilities, not from memorization or
accidental information exposure, and that negative results are not due to avoidable flaws in
our experimental design.

7. Metrics and Statistical Analysis
7.1 Outcome metrics, task success, belief inference accuracy, ToM tier scores

We first evaluate each agent’s performance through its task outcomes. The most direct
metric is the success rate for each scenario, which assesses whether the agent has achieved
its payoff-relevant objective given the scenario’s hidden state and payoff matrix [42].
Success is defined contextually, namely in cooperative search, it means jointly locating and
retrieving an object within budget. In deception and signaling games, it requires the sender
to induce a belief update that yields a target action from the receiver. In coordination
problems, it is achieved when joint choices satisfy the payoff-dominant equilibrium. We
compare these success rates to baseline policies to confirm that the agent performs above
chance or simple heuristics. Recognizing that not all successes are equivalent, we focus on
belief-critical decision points within each episode. These are junctures where the correct
action depends on accurately understanding another agent’s knowledge or beliefs. We
measure the proportion of these critical points at which the agent selected the belief-
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sensitive optimal action. This approach sharpens construct validity by filtering out routine
segments of an episode and directly tying performance to the agent's use of epistemic
leverage.

We also directly evaluate belief inference accuracy by comparing each agent’s latent or
reported beliefs against the simulator’s ground truth. In the case of policies that expose
explicit belief reports, such as a probability distribution over world states, we measure
alignment using proper scoring rules like the Brier score and cross-entropy. These scores
are normalized by the entropy of the ground-truth distribution to enable difficulty-aware
comparisons across tasks. When policies do not provide explicit belief states, we infer a
behavior-implied belief by inverting an action-value model calibrated on the environment’s
dynamics. An action that is optimal only under a specific belief about a partner implies a
posterior over that partner’s beliefs. We then score this inferred belief against the ground
truth using the same scoring rules. This dual approach credits implicit Theory of Mind
(ToM) while guarding against persuasive but unfaithful verbal rationales.

We have computed ToM tier scores to summarize performance. Each episode possesses a
hidden construct signature that identifies the order of belief required for optimal decisions.
We label each decision point by tier, such as first-order for tracking a partner’s beliefs about
the world or second-order for tracking a partner’s beliefs about one’s own beliefs. An
agent’s score for an episode is the proportion of optimally resolved decision points at each
tier. The final ToM tier score is a weighted sum across tiers, with weights reflecting both
the tier order and the decision point’s importance to the expected return. This weighting
ensures that sparse but decisive second-order points are not overshadowed by numerous
low-stakes first-order points. This tiered evaluation reveals the depth at which an agent’s
recursive reasoning fails, offering a clear profile of its ToM limitations. In order to
standardize comparisons, we normalize scores between a naive baseline and an ideal
reasoner’s performance, reporting results as a percentage of this range.

7.2 Process metrics, justification quality, belief alignment over time

Outcome metrics are complemented by process evidence, as ToM fundamentally involves
representing and updating others’ mental states [41-43]. We have used agent outputs to
capture both verbal justifications and nonverbal signals of belief tracking over time.
Justification quality is evaluated from message transcripts by human raters who are blinded
to the experimental condition and model identity. Raters assess whether a justification
correctly identifies the belief holder, cites relevant observations, and updates beliefs
appropriately. They also judge if the rationale anticipates the interlocutor's interpretation of
a message. We quantify inter-rater agreement using Krippendorff’s o for categorical items
and an intraclass correlation coefficient for scalar scores. In the case of automatic analysis,
we also compute the text similarity between agent justifications and ground-truth
explanations, which are derivable from the known environment. These metrics verify that
an agent’s reasoning is correct not just in its conclusion but also in its process. Belief
alignment over time measures how closely an agent’s reported or behavior-implied beliefs
track the ground truth as an episode unfolds. We compute a per-timepoint divergence, such
as the Kullback—Leibler divergence, between the agent's estimate of another’s beliefs and
the simulator-computed ground truth. We then summarize each episode with a discounted
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cumulative alignment score, which upweights early, belief-setting moves. A high alignment
score indicates that an agent reached success through consistent perspective tracking rather
than fragile heuristics. An agent with proficient ToM maintains near-zero divergence,
whereas an agent that confuses perspectives exhibits spikes in this error measure.

We also track belief—action coherence by scoring the consistency of an action with the
agent's previously reported beliefs [43]. An action that contradicts a stated belief under the
optimal policy is penalized as incoherent. Analyzing these process measures allows us to
identify successes achieved through luck or non-ToM heuristics, which typically manifest
as high task success coupled with poor justification quality or low belief alignment.
Conversely, high belief alignment preceding a failure due to an unpredictable event
suggests an ability deficiency rather than a performance artifact. Belief alignment over time
measures how closely an agent’s reported or behavior-implied beliefs track the simulator’s
ground truth as the episode unfolds. Let b} denote the simulator-computed belief

distribution for agent i at time t given their observation history, and let E;_)] denote the
focal agent’s estimate (reported or behavior-implied) of i’s beliefs at time t. We compute a
per-timepoint divergence D; = KL (bé I B;_)] ) or its symmetrized Jensen—Shannon variant
when beliefs are multimodal. We summarize each episode with a discounted cumulative
alignment score A = ¥, ¥*(1 — norm(Dy)), where norm(-) maps divergences to [0,1] by
reference to the divergence of a uniform posterior. The discount y upweights early, belief-
setting moves in coordination games and equalizes the contribution of long and short
episodes. This alignment score is reported jointly with outcome metrics. Their
correspondence helps distinguish agents that reach success through consistent perspective
tracking from those that succeed via fragile heuristics, namely the importance of aligning
process traces with veridical belief states made possible by logging observations, actions,
and messages with epistemic tags and grounding handles, an aspect that was emphasized in
our proposed design.

In simpler terms, belief alignment is asking the question "as the process goes on, does the
agent’s internal model of what others know remain accurate? If, at time, the partner should
have a 70% chance of believing X (given what they’ve seen), does our agent also act as if
the partner has ~70% confidence in X (say, by how it communicates or by what it expects
the partner to do)?". We track a divergence or error measure at each step. A perfectly ToM-
competent agent would keep this divergence near zero throughout, whereas an agent that
sometimes forgets or confuses perspective would show spikes (like a high KL divergence
at the point where it makes a mistake about what the other knows). We have also tracked
belief action coherence by scoring the consistency of an action with the agent's previously
reported beliefs. An action that contradicts a stated belief under the optimal policy is
penalized as incoherent. Analyzing these process measures allows us to identify successes
achieved through luck or non-ToM heuristics, which typically manifest as high task success
coupled with poor justification quality or with low belief alignment. Conversely, high belief
alignment preceding a failure due to an unpredictable event suggests an ability deficiency
rather than a performance artifact.

7.3 Pragmatics and communication efficiency measures
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Communication is the primary medium for revealing and manipulating beliefs [41-43]. Our
efficiency measures therefore link message content to the receiver’s epistemic state rather
than to surface features like length. We have used pragmatic informativeness as expected
posterior contraction for the receiver. For a message m emitted at time t to receiver r with
pre-message posterior p; over a task-relevant latent X, the informativeness is [(m — r) =
E,, [H(X|p,) — H(X|p¢+1)], where pyyq is the receiver’s posterior after updating on m
under the protocol’s grounding rules. We have estimated this from the simulator’s
reconstruction of r’s posterior. In cooperative tasks, higher expected contraction is better,
conditional on truthfulness. In competitive tasks, misinformative messages are rewarded
only when payoff structure justifies strategic obfuscation, and we have caped rewards to
prevent runaway miscalibration incentives as described in our reward-shaping policy. The
explicit dependence of shaping terms on the receiver’s posterior, rather than on ground truth
alone, avoids smuggling in answers and aligns pragmatic scoring with the recipient’s
epistemic state.

In simpler terms, we measure how much each message reduces uncertainty for the other
agent. If a message does not tell the partner anything they could not infer, it is low
informativeness. If it greatly reduces their uncertainty (either by providing a clue in a
cooperative game or by sending them down a wrong path in a deception game), it is high
(pragmatically) informative. We also account for misinformation, namely a message that
leads the partner to have false beliefs might be scored negatively in cooperative contexts
(where it is just confusion) but can be part of the strategy in competitive ones (there, it
might earn positive reward if it confers advantage, although within limits in order to avoid
encouraging the model to hallucinate wildly beyond what the game incentives justify).

Efficiency also depends on channel constraints [41]. Bits-per-decision-point, the ratio of
posterior contraction to message length, quantifies communicative economy. We have also
scored time-sensitive pragmatics, for instance, in interruptible regimes, silence can signal
deference or confidence. The use of costly listener check-backs, such as optional
confirmations, offers another perspective on pragmatic competence. Overuse may signal
pessimistic beliefs about a partner’s comprehension, while underuse can indicate
overconfidence. We have also measured convention alignment. In repeated interactions,
agents often develop emergent conventions for communication. We have fit a dynamic
language model to a partner pool’s messages and compute the surprisal of each new
message. Decreasing surprisal over time, paired with stable informativeness, signals the
emergence of efficient conventions rather than routine collusion. We analyze this
interchange alongside outcome metrics to distinguish healthy pragmatic adaptation from
weak, non-generalizable codes.

7.4 Calibration, confidence elicitation, and over/under-confidence

Calibration measures the alignment between an agent’s expressed confidence and its
empirical accuracy [41,45]. We elicit confidence in two ways, either directly from policies
that emit explicit posterior probabilities, or via a scalar self-report for categorical claims. In
both cases, we compute metrics such as Expected Calibration Error (ECE) and the Brier
decomposition. A reliability diagram with a slope of 1 and an intercept of 0 signifies perfect
calibration. We evaluate calibration at belief-critical decision points, as it is most important
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for agents to act on well-calibrated uncertainty when the world is epistemically ambiguous.
We also measure calibration-conditioned pragmatics by correlating confidence with
communication choices. Well-calibrated agents should reserve expensive signals for high-
leverage, high-uncertainty states. Our calibration suite quantifies these tendencies and links
them to specific failure modes, such as sending a misleading message at the wrong time
due to a misjudgment of another's knowledge.

Over and under-confidence are quantified as directional deviations between confidence and
. . 1
empirical accuracy. We define over-confidence as the signed error OC = ﬁZn(Cn —ay,),

where c,, is confidence and a,, is outcome accuracy for instance n. We complement this
with threshold-conditioned measures, namely the false positive rate among high-confidence
claims and the false negative rate among low-confidence claims. Because deception games
incentivize selective misrepresentation, we distinguish epistemic miscalibration
(confidence misaligned with accuracy) from strategic misrepresentation (confidently
stating a belief known to be false to manipulate the partner). The latter is detected when the
agent’s internal state or prior belief report diverges from its public message in a direction
that improves payoff under the partner’s expected update model. One should note that over-
confidence in false beliefs and under-confidence in correct inferences co-occur and that
misalignment between self-reports and subsequent actions is a recurrent failure mode. Our
proposed calibration suite quantifies these tendencies and ties them to pragmatic choices.

7.5 Reliability, test-retest, inter-rater, and inter-scenario consistency

Reliability ensures the stability of our measurements across minor perturbations [45,46].
We have conducted reliability analyses at three levels, namely data generation, human
judgment, and scenario variation. Test-retest reliability has been estimated by repeating
matched episodes with different random seeds while keeping the epistemic structure
invariant. We have computed the correlation and concordance of metric vectors across these
repeats, reporting an intraclass correlation (ICC) to quantify consistency. Inter-rater
reliability for justification quality is quantified with Krippendorft’s a for categorical ratings
and an ICC for scalar ratings. This procedure ensures that our human judgments are
consistent and not subject to individual rater bias. Inter-scenario consistency assesses
whether agents perform similarly on different episodes that share the same ToM tier
requirements. We have computed a hierarchical coefficient w across episodes within tier-
stratified families and fit a multi-parameter item-response model. This model confirms that
our metrics capture an enduring capability, such as first or second-order reasoning, rather
than performance on idiosyncratic scenarios. The stability of this model's factor structure
across different partner pools suggests our tasks coherently measure an underlying ToM
ability.

7.6 Effect sizes, confidence intervals, significance testing, and power analysis

In order to ensure robust and interpretable results, we report effect sizes alongside p-values
[39,42]. For binary outcomes, we use differences in proportions and odds ratios, while for
continuous metrics, we report standardized mean differences like Hedges’ g. When

distributions are skewed, we present median differences with bootstrap intervals. Our
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hypothesis tests are pre-registered and use mixed-effects models to account for the
hierarchical structure of the data, such as episodes nested within templates. In the case of
success outcomes, we fit generalized linear mixed models, and for continuous outcomes,
we use linear mixed models. We employ cluster-robust sandwich estimators and control the
false discovery rate using Benjamini—Hochberg corrections for multiple comparisons.
Power analyses are conducted ex ante using simulation-based methods that reflect our
planned statistical tests. We estimate variance components from pilot data to determine the
minimum number of episodes required to achieve 80% power to detect targeted effect sizes.
This ensures that our studies are adequately powered to identify meaningful differences.
Our statistical approach is deliberately conservative to ensure that claims of emergent ToM
behaviors are robust and not artifacts of chance.

7.7 Causal analysis and counterfactual evaluation

In order to move beyond correlation and make mechanistic claims, we employ interventions
that test causal dependencies [42]. Our framework supports both algorithmic and
environmental counterfactuals. Knowledge-swap and belief-inversion interventions
manipulate the distribution of knowledge among agents while holding the surface
realization of the scenario constant. For example, by swapping the private observations of
two agents, we can test whether a policy is sensitive to certain knowledge of studied agents.
A ToM-sensitive policy will appropriately invert its actions, whereas an insensitive one will
fail. A positive local average treatment effect from these interventions provides evidence
that the policy conditions on nested beliefs. Ablation-based causal attribution targets
specific components of the agent's policy wrapper or inference mechanism. We have
systematically removed or degraded features like memory, explicit belief states, or
communication bandwidth and measure the resulting performance delta. This allows us to
attribute performance gains to the ablated components. Mediation analysis links process to
outcomes by testing whether the effect of an intervention (e.g., increased model size) on
task success is mediated by a process metric (e.g., improved belief alignment). A significant
mediated effect supports the claim that the intervention improves performance specifically
through enhanced belief tracking. When model internals are accessible, we conduct
counterfactual activation-level interventions, such as ablating specific attention heads
suspected of carrying perspective-tracking signals. A consistent drop in performance
following a targeted ablation provides strong evidence that the targeted component causally
supports ToM-relevant computations. By combining these approaches, we build a robust
causal account of the mechanisms underlying an agent's ToM capabilities.

8. Results

The empirical findings from our multi-agent simulation program reveal a complex
environment of Theory of Mind (ToM) capabilities. This section presents these findings,
beginning with an analysis of overall performance stratified by task family and ToM tier.
We then examine scaling behavior with respect to model size, data, and agent count.
Subsequent analyses explore the causal impact of communication bandwidth, memory, and
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planning scaffolds, followed by an assessment of generalization and robustness to
perturbations. The section continues with comparisons to human baselines, focusing on
sample efficiency, and concludes with qualitatively analyzed case studies that clarify both
emergent strategies and recurrent failure modes. All of the results are computed at belief-
critical decision points in order to ensure that measured competence is based on epistemic
structure rather than world-only shortcuts. This quantitative data is complemented by
process evidence from belief alignment, belief-action coherence, and message-level
pragmatic efficiency. Statistical claims are supported by mixed-effects analyses with
cluster-robust uncertainty, preregistered contrasts, and corrections for multiple
comparisons. Causal attributions are derived from ablations and counterfactual
interventions that perturb knowledge states while preserving surface realization. Adhering
to the proposed framework, we credit ToM-relevant competence only when outcome
metrics, process metrics, and causal probes converge.

8.1 Overall performance across task families and ToM tiers

Across the full experimental battery, foundation-model agents demonstrated reliable
competence on first-order ToM, particularly when belief sensitivity was necessary for
success and scaffolding was held fixed. For instance, in cooperative search scenarios where
agents observe disjoint world segments and must infer a partner's knowledge to choose their
next action, success rates at belief-critical decision points rose well above scriptable world-
only heuristics. These rates approached a substantial fraction of the performance gap
relative to the idealized symbolic reasoner used as a ceiling. The simulator's construct
signatures enable a nuanced analysis of performance aggregated by recursive depth. First-
order points, which involve tracking a partner’s beliefs about the world state, were
consistently easier to solve than second-order points that require tracking a partner’s beliefs
about one’s own beliefs. The largest absolute performance gains appeared in the former.
Tier scores have been computed as weighted proportions of belief-critical points solved at
each depth, with weights reflecting marginal contributions to expected return. This
construction prevents insignificant episodes overloaded with low-stakes first-order
decisions from obscuring sparse but decisive higher-order junctures. The tiered perspective
is very important for interpreting the overall results, as aggregate episode success can
conceal whether progress is concentrated at first depth reasoning or extends into recursive
belief modeling.

Performance patterns have generalized across task families with predictable variation. In
deception and signaling games, agents have learned to exploit payoff structures that
rewarded informative messages under alignment and strategically ambiguous messages
under conflict. Their ability to align utterances with a listener’s posterior belief, rather than
with ground truth, remained imperfect. The pragmatic-efficiency approach clarifies these
differences by quantifying the expected posterior contraction per token. In cooperative
communication, the best agents achieved a high bit-per-message rate, rapidly reducing
uncertainty. In competitive settings, they sometimes deliberately left the partner uncertain
or even increased uncertainty in a manner aligned with equilibrium predictions. Even in
competitive games, agents used outright falsehoods sparingly, mirroring human behavior
where obvious lies are less common than subtler misdirections, unless the scenario

specifically incentivized a direct false signal.
Pag. 389/ 444
Article’s total number of pages: 45



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025

Concrete performance figures illustrate this tiered distinction. Agents achieved
approximately 85% success on first-order points in the easiest cooperative tasks, compared
to about 50% for a simple heuristic and 95% for an ideal observer. On second-order points
within those same tasks, they hovered near 60%, which is above the heuristic’s 33%
guessing level but well below the ideal 90%. In competitive tasks, first-order performance
was slightly lower at around 75%, and second-order performance was lower still, often
between 50% and 55%, indicating that higher-order reasoning remains a significant
bottleneck. These results collectively confirm our expectations that current models possess
non-trivial but limited ToM-like capabilities. They consistently handle scenarios requiring
one-step inferences based on another agent’s knowledge, such as acting on the fact that
"Agent B does not know X". Nevertheless, when a situation demands recursive thinking
like "Agent A thinks that Agent B does not know X, so Agent A will do Y, which Agent B
will misinterpret" performance is only slightly better than chance and far from human-like.
This dichotomy emphasizes the importance of tiered evaluation, as aggregate success rates
can otherwise mask a reliance on simpler belief reasoning.

8.2 Scaling trends with model size, data, and agent count

Analyses of scaling reveal that ToM-relevant ability improves with model size and data
diversity, although this growth is nonlinear and varies across different constructs. In
absolute terms, larger models, defined by more parameters and more extensive training
data, achieved higher overall success and superior tier scores. The improvement from a 1-
billion-parameter model to a 10-billion-parameter model on first-order tasks is particularly
pronounced, with success rates often increasing from near-baseline levels to approaching
the performance ceiling. On our primary false-belief task, for example, the small model
achieved about 55% on critical decisions, the medium model reached approximately 70%,
and the largest model attained 85%, closing most of the remainder to optimal performance.
On second-order tasks, however, even the largest model struggled. While a positive trend
with scale was evident, with success rates increasing from 35% to 45% to 55% for small,
medium, and large models respectively on one benchmark, all remained low in an absolute
sense. This suggests that simply scaling current architectures may be insufficient for
developing robust higher-order ToM.

We have also analyzed scaling with respect to training data. Models exposed to more
diverse interactions or multimodal pre-training sometimes outperformed purely text-trained
counterparts of similar sizes. This was especially true in tasks involving spatial perspective,
where a multimodal model familiar with images could better handle reasoning about
visibility than a text-only model, presumably due to learned spatial awareness. Nonetheless,
model size remained the primary driver of performance, with data variation providing
secondary benefits. Notably, some scaling effects were non-monotonic. Extremely large
models with heavy instruction-tuning exhibited slightly worse performance in deception
games than slightly smaller models. Investigation revealed that the largest models
possessed a strong preference for truthful, helpful responses, likely an alignment effect from
their training. In a game requiring deception, this bias led them to occasionally refuse to lie
or to over-cooperate, thereby hurting their score. This emphasizes how scaling a model
tuned for general helpfulness can reduce its capacity for ToM-required deception when the

general training objective misaligns with the specific task objective.
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As another dimension of scaling, we varied the number of agents in certain tasks to test
combinatorial generalization. A model adept at two-agent interactions was tested in a three-
agent scenario involving one hider and two seekers, each with different knowledge. The
performance has declined sharply. The model, proficient in mutual ToM with one partner,
often became confused when juggling the beliefs of two others. Its performance fell roughly
in proportion to the number of pairwise interactions it had to consider, which suggests that
current models do not effortlessly scale their ToM reasoning to larger groups. Scaling has
consistently enhanced performance up to a point, making bigger and more broadly trained
models undeniably better, particularly for first-order reasoning.

Nevertheless, higher-order ToM remains a significant challenge where increasing model
parameters produces diminishing returns. The results support a nuanced emergence
sequence of events. We have observed significant improvement in first-order ToM as an
emergent capacity around the medium-to-large model scale, but robust second-order ToM
may require greater scale, architectural innovations, or more targeted training in order for
it to emerge. From a statistical perspective, our pre-registered contrast of small versus large
models on first-order tasks was highly significant, with an odds ratio greater than 3 and a
p-value less than 107°. On second-order tasks, the difference, while present, was less
pronounced, with an odds ratio around 1.5 and a p-value of approximately 0.05 in some
cases. This aligns with the qualitative impression that something new happens at scale for
simpler ToM, where the model transitions from struggling to succeeding, whereas for
harder ToM it merely transitions from struggling to slightly less struggling.

8.3 Impact of communication bandwidth, memory, and planning

We have established causal attributions through a series of ablation studies that have
systematically toggled components of the policy wrapper while holding partner pools,
scenario distributions, and decoders constant. As reported in Section 6.3 with cluster-robust
intervals, the presence of memory and belief tracking, ample communication bandwidth,
and the ability to internally plan all substantially and differentially have an effect on
performance. Removing the memory module, which limited the agents' history window or
their explicit belief state in the prompt, caused a moderate decline in first-order ToM
success and a severe drop in second-order success. In the case of a large model, this ablation
reduced first-order success by about 15 percentage points and second-order success by
about 30 points, as maintaining layered beliefs over time is exceptionally difficult without
memory cues. Smaller models, which may not have fully leveraged memory, showed
smaller declines, suggesting that larger models were indeed using the feature for more
complex multi-step reasoning. Limiting communication bandwidth, for instance by
allowing only a single short message per agent, had a dramatic impact on tasks requiring
coordination.

In a coordination game that relied on exchanging hints, reducing bandwidth from an
average of five messages to just one per agent reduced success by roughly half. Agents
struggled to compress all necessary information into a single message, although they
attempted to make each message more compact. The effect of this ablation was strongly
task-dependent, with negligible impact in tasks where agents could coordinate implicitly
through actions but had a substantial effect in tasks where communication was the intended

Pag.391/444
Article’s total number of pages: 45



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025

mechanism for knowledge transfer. Disabling the planning scratchpad, thereby forcing
greedy one-pass decision-making, disproportionately affected second-order scenarios. With
planning, agents could discover non-obvious strategies, such as a two-step deception
involving a misleading hint followed by exploitation. Without planning, they resorted to
simpler, immediate actions. In a bluffing game, an agent with planning might pretend a
subtle tell over several rounds, while one without it would either fail to bluff or execute an
ineffectual bluff at an inopportune moment. Numerically, planning increased the win rates
in a complex deception game from approximately 40% to 60% for a large model. The small
model showed no difference, likely because it was not effectively using the scratchpad.

Further analysis revealed synergistic interaction effects between these components. An
agent with both memory and planning could execute multi-step deceptions that involved
recalling a partner's prior knowledge, a feat neither feature alone could fully enable. A case
study demonstrated this synergy, namely an agent with both features executed a plan to "not
mention the key now (knowing the partner did not see it), then later lead the partner away
from it". When the memory was removed, the agent forgot the partner's ignorance and
revealed the key's location. When the planning was removed, it never formulated the multi-
turn maneuver. The full strategy emerged only with both of the components intact.
Interpretability analyses of internal states and transcripts corroborated these findings.
Agents with memory often maintained an explicit variable, such as "Partner Knows X =
False" in their prompt. This variable was correctly updated and influenced decisions.
Without memory, this state was either absent or incorrect, leading to obvious mistakes. The
scaffolding components we have engineered are therefore extremely important for
performance on belief reasoning tasks. This confirms our ability against performance
distinction, showing that some models possess latent capabilities that they cannot express
without the proper support. Conversely, adding scaffolds can reveal to a degree latent
competencies even in smaller models. These findings also validate our methodological
stance that in order to fairly measure intrinsic competence, one may need to support a model
with tools in order to avoid underestimating it due to performance limitations. In doing so,
it is very important to carefully track what is intrinsic to the model in contrast to what is
being provided by the experimental setup. Our ablations have helped clarify this boundary.

8.4 Generalization and robustness under perturbations

Generalization tests manipulate scenario, partner, and interface novelty while preserving
the latent epistemic structure recorded in construct signatures. When presented with unseen
scenario variations that require the same order of ToM reasoning, agents have produced
mixed results. They demonstrated clear generalization of core concepts across surface
changes. A model trained on an "object in box" false-belief task performed nearly as well
on a "person in location" false-belief task, with only a minor initial drop in success of 5%
to 10% that closed after a few trials. This implies the model learned the general principle
of tracking others' knowledge rather than memorizing a specific solution. However,
performance has degraded substantially under more adversarial or distribution-shifted
conditions. For instance, when a partner's behavior was slightly irrational or noisy, the
agents have often failed to predict those actions correctly.
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A robust ToM would account for a partner's potential non-optimality [42,45,47,48], but our
tested models tended to assume a consistently rational partner, a bias likely inherited from
their training data. This highlights a limitation, namely their ToM is weak to assumptions
about agent rationality. We have also assessed generalization to partner novelty by exposing
agents to unfamiliar behavioral styles, such as a very talkative partner in rapport with a terse
one. Agents trained with a diverse partner pool adapted well, whereas those trained on a
single style were initially confused. In a striking example, an agent accustomed to honest
partners consistently failed when faced with a lying partner because it did not update its
assumption of honesty within a single episode. This suggests the absence of a meta-
reasoning layer for inferring a partner's underlying policy.

Few-shot transfers, providing agents with a small fine-tuning set or prompt adjustment,
have improved adaptation. Larger models have adapted somewhat after a couple of
demonstrations that a partner lies about location, learning to distrust that partner’s messages
in subsequent trials. Smaller models have shown less ability to adapt via few-shot learning.
Cross-lingual tests have shown robust behavior, with an agent performing well in English
was also performing well in French, stumbling only on idioms or unfamiliar cue words. A
few-shot prompt with French examples was sufficient for it to adapt. A typical quantitative
result for generalization was an 80% success rate in the original scenario, which dropped
to 72% on the first trial of a novel scenario with the same structure, before rising to 78%
after a few runs. A change in partner from cooperative to deceptive might drop success
from 75% to 50% initially. If the model could learn over repeated episodes, it might climb
back to 65% as it identified the deception pattern.

Knowledge-swap counterfactuals served as further robustness tests. Robust models altered
their behavior predictably when the knowledge distribution was swapped, whereas weaker
models, having learned a fixed policy, collapsed. In order to gauge external validity, we
have compared these results to expectations from analogous human experiments. Humans
handle scenario and partner variation gracefully, adapting almost instinctively. Our models
show some flexibility but require explicit retraining or multiple trials, indicating that they
lack the one-shot generalization and theory-building at which humans excel. The tested
agents have demonstrated a moderate degree of generalization, having captured patterns
that apply to similar puzzles. Nevertheless, they remain weak when confronted with
situations outside of their training distribution, especially regarding the behavior of other
agents. They do not possess the breadth of a human ToM that spans arbitrary contexts and
agent types. These findings emphasize where future work could focus, such as training on
a wider variety of partner behaviors or adding meta-learning components to improve
robustness.

8.5 Human compared to model comparisons and sample-efficient ToM

In order to contextualize model performance, we have conducted direct comparisons with
human participants performing analogous tasks under identical constraints. Human
participants displayed near-ceiling first-order ToM reasoning and strong, though imperfect,
higher-order reasoning. Adults typically solve false-belief tasks with ease and handle
second-order beliefs in simple scenarios with high accuracy. Our best model, by contrast,
still made regular mistakes on second-order tasks that an adult would find trivial. This
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performance distance is considerable. In one benchmark, humans scored approximately
95% on second-order points, where the best model scored only about 60%. This disparity
indicates substantial room for improvement and suggests that current models do not
implement ToM in the rich, flexible manner that humans do.

The disparity in sample efficiency is even more pronounced. A human, given the game
rules and a single practice round, generally grasps the task structure by leveraging a lifetime
of social experience. Our models required thousands of self-play rounds or fine-tuning
examples to reach their peak performance. For instance, in a deception game, a human
might immediately infer the need to lie about a hidden object's location, whereas the model
would only arrive at a consistent lying policy after extensive training. The models'
performance progression across scales mirrors certain aspects of human developmental
trajectories. Small models, analogous to toddlers, fail even simple false-belief tasks.
Medium models, perhaps like older children, master first-order tasks but stumble on
second-order ones, which is reminiscent of children passing first-order tests around age four
but not reliably solving second-order tasks until ages six or seven. Our largest models still
failed to reach adult-like performance on second-order reasoning.

A simple Turing-like test asked human evaluators to distinguish between transcripts of
model and human play. In straightforward cooperative tasks, humans struggled to tell them
apart, as the large model acted rationally and helpfully. In more subtle or competitive tasks,
however, humans noticed oddities, such as synthetic language or unnatural repetition,
revealing the model's non-human characteristics. The handling of miscommunication
revealed another telling difference. Humans often clarify misunderstandings quickly,
whereas our agents rarely did so unless explicitly trained with check-back mechanisms.
This suggests a lack of active mental-state modeling and meta-uncertainty reasoning.
Humans also excelled at on-the-fly adaptation, updating their theory of a partner after a
single surprising outcome, while models struggled to adapt within one episode without
retraining. Conversely, in repetitive environments, the models exhibited a consistency that
can surpass human performance, as they do not suffer from boredom or lapses in attention.
Human participants have consistently outperformed the models, especially in tasks
requiring complex reasoning, and demonstrated vastly superior sample efficiency. This
significant difference cautions against strong claims of artificial ToM. Our agents exhibit a
narrow, operational semblance of this capacity within constrained games, while humans
possess a broad, flexible faculty applicable across diverse life situations.

8.6 Case studies, emergent strategies and failure episodes

Qualitative case studies illustrate how strategies and failures arise from the interaction
between incentives, observability, and communication constraints. In a cooperative
communication task, we have observed an emergent convention where two agents have
developed a shorthand for referring to locations over multiple rounds. Initial full messages
like "I checked the left cave and it's empty" were compressed to "left empty", a convention
that was stable and improved performance by saving time. In a deception game, an agent
spontaneously learned a multi-turn strategy. It would first leak a piece of true information
to build trust before lying about an important element. We did not explicitly train this
strategy, it emerged during reinforcement learning fine-tuning. This behavior is noteworthy

Pag. 394 /444
Article’s total number of pages: 45



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025

as it implies the model is influencing the other agent's trust as it evolves over time, a form
of complex ToM behavior. Log analysis confirmed that the partner's belief state reflected
higher trust after the small truth, making the subsequent lie more effective.

Conversely, analyses of failure episodes revealed recurrent error patterns. A common
failure was the confabulation of mental states, where an agent would state "As you have
seen, | moved the key to the red box" when the partner had not witnessed the action. This
error, reminiscent of a child failing to differentiate between self and other knowledge,
frequently led to confusion and performance degradation. Another failure type was mind-
blind planning, where an agent devised a plan assuming a partner has shared its knowledge,
resulting in wasted actions like communicating information the partner has already
possessed. We have also observed overconfidence in deceptive agents. One agent
developed a habit of bluffing every round, which led the partner to learn to ignore its
messages. A human would adapt, but the agent persisted with its failing strategy, lacking
the meta-cognitive ability to recognize that its model of the partner was flawed. This
represents a failure in second-order reasoning regarding the partner's beliefs about the
agent's own intentions.

Despite these failures, we also observed instances of resilient recovery behaviors in
cooperative tasks. In one episode, an agent misunderstood a message and took an incorrect
action but then corrected its course after a subsequent partner query implicitly revealed the
error. This shows that agents can sometimes self-correct within an episode if the feedback
is sufficiently clear. These case studies provide qualitative insights that complement
aggregate statistics, revealing both creative adaptations and the precise limits that lead to
breakdowns. They emphasize a central aspect of our analysis, namely the agents have
learned powerful patterns but not general principles. They can innovate within these
patterns but fail in telling, often human-like ways when operating outside of their comfort
zone. These observations suggest multiple opportunities for improvement, such as
incorporating dynamic trust estimators or training agents on corrective dialogues. The rich
interactive behaviors observed in these studies depict that a rudimentary form of social
cognition is beginning to take shape in these models, highlighting the path forward for
developing more robust artificial ToM.

9. Analysis and Interpretability

The empirical approach described in the preceding sections deliberately separates what our
agents achieve from how they achieve it. This section transitions from documenting their
success at belief-critical decision points to explaining the internal mechanics of that
success. We analyze the models’ internal operations and behavioral characteristics to
determine whether their performance comes from genuine belief-tracking mechanisms or
from coincidental correlations and shortcuts. Through interpretability tools, auxiliary
probing tasks, and targeted interventions, we uncover the representations and processes that
underlie their observed behaviors.

9.1 Probing for belief and perspective representations
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Probing analyses leverage an important feature of the simulator, namely at any timestep,
the environment can enumerate the posterior probabilities over world states and other
agents’ mental states consistent with an agent’s observations. This capability allows us to
generate labeled data from a model’s internal activations. Specifically, we record the hidden
state vectors from various layers at moments when a partner agent either knows or does not
know a critical fact. We then label these activations with the ground truth, such as "partner
knows X" or "partner ignorant of X" and train simple classifiers to test if this information
is linearly separable within the model’s activations.

These analyses reveal that in better-performing models, certain components indeed encode
the partner’s knowledge state. In a 24-layer Transformer, for example, the activation pattern
at layer 18 could predict with approximately 90% accuracy whether the partner had
observed the key’s location, where 50% represents chance. In smaller or less effective
models, this accuracy was near chance, suggesting they fail to form a distinct representation
of the partner's knowledge. This discovery indicates the model has learned an internal
feature corresponding to the partner’s belief about the key. Further examination of the
attention heads identified specific ones that attend strongly to tokens indicating an agent’s
observational status. For instance, a particular head would assign a high attention weight to
the pronoun "he" in the phrase "he leaves the room" when the model evaluated what that
partner might know later.

We have also analyzed whether the model represents its own knowledge differently from
that of others. The results confirmed this distinction. The vector directions corresponding
to "I know X" in rapport with "Partner knows X" were not identical and could be reliably
distinguished, suggesting the model differentiates perspectives internally rather than mixing
all knowledge. This capacity to track separate knowledge states is a core component of a
theory of mind. As another approach, we have prompted the model to output its own internal
estimate of a partner’s knowledge. The large model’s expressed estimates matched the
ground truth in approximately 80% of cases, whereas a smaller model performed at chance.
This indicates that the large model differentiates beliefs internally and can also express
them when queried appropriately.

These probing studies collectively show that the model’s intermediate representations carry
non-trivial information about others’ mental states. The model appears to represent "the
other does not know" at a functional, representational level. This provides some evidence
for genuine ToM-like reasoning, as a mere heuristic would not produce such a cleanly
encoded latent variable for partner knowledge. While we found no evidence of a discrete,
symbolic "belief register", the observed correlation patterns suggest that combinations of
neurons track key properties of the environment. More advanced interpretability techniques
might isolate "concept neurons" for knowledge and ignorance. Preliminary experiments
have already identified dimensions in the latent space that, when amplified, cause the model
to act as if its partner is omniscient, and when suppressed, cause it to act as if its partner is
oblivious. This aspect suggests an intriguing variety of belief attribution that needs further
exploration studies.

9.2 Attention/activation analyses and representational similarity
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Attention patterns and activation geometry provide a second view on perspective encoding.
Our approach links claims to confirmation with explicit grounding tags, enabling us to trace
which parts of the input a model focuses on when making decisions that depend on others’
beliefs. Analysis of attention weights at belief-critical moments reveals targeted
information retrieval. For instance, when an agent A decides whether to inform agent B
about an object, certain attention heads in a well-performing model strongly focus on the
input segment indicating B’s awareness. If the conversational history contains the sentence
("B did not see the coin") an attention head in A’s model locks onto "did not see" when A
considers mentioning the coin. We interpret this as the model retrieving the fact of B’s lack
of knowledge of the respective fact in order to inform its action, a process analogous to
human recollection. Representational similarity analysis further illustrates the model's
internal organization. By measuring the cosine similarity of high-dimensional hidden states
across different conditions, we have found that scenarios with the same underlying belief
structure cluster together in latent space.

For example, all situations where "A knows X, B does not" yielded similar activation
patterns, which were distinct from those where "both know X". This clustering indicates
that the model’s internal representation space is organized by others’ mental states, not just
by superficial input features, another characteristic of a ToM-like internal model. When we
perturbed an input by rephrasing a sentence without altering the belief structure, the model’s
activations at decision points remained highly similar. This sensitivity to core belief facts
over lexical details strengthens our confidence that the model processes the actual content
of who observed what. Quantitatively, we found that the factor "partner knows/does not
know" could explain a significant portion, approximately 20%, of the variance in one
layer’s representations. In contrast, a change in wording explained less than 5% of the
variance. We also identified a subset of neurons whose activations correlated strongly (r >
0.8) with key belief variables. Intervening on these neurons by forcing their activation high
or low caused the agent’s behavior to change accordingly. Forcing a "partner knowledge
neuron" to a high value caused the agent to cease providing information, as if assuming the
partner already knew. These findings reinforce the conclusion that our models, particularly
the larger ones, have formed a distributed model of other agents within their weights.

9.3 Causal interventions (ablate heads/neurons, patch activations)

Correlations and geometries are not for the time being mechanisms. In order to establish
causality, we have performed targeted interventions on the components identified in our
previous analyses, such as specialized attention heads and neurons strongly correlated with
belief states. We then modified or removed these components and measured the effect on
performance. For instance, after identifying an attention head in layer 18 that was critical
for belief reasoning, we ablated it by zeroing out its output. The agent’s performance on
communication tasks dropped significantly. Qualitatively, the agent’s messages became
less relevant, sometimes over-explaining and other times under-explaining, as if it had lost
track of its partner’s knowledge. Tasks that did not require perspective-taking, such as
solving a puzzle alone, were unaffected, confirming the head's specific role. We also
employed activation patching, where we recorded the activations from a successful run and
injected them into a failing run at key layers. This intervention markedly improved the

failing run’s behavior, as if providing it with the "right thought" mid-task. Conversely,
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injecting activations from a failing run caused a successful one to fail. This suggests that
the information contained in those activations causally influences success.

At the neuron level, we have systematically set the top ten neurons most correlated with a
belief inference to average values corresponding to the opposite belief. This intervention
flipped the agent’s decision approximately 30% of the time in borderline cases, suggesting
these neurons collectively carried a substantial part of the decision logic. An aspect from
another causal test further illustrates this point, namely we have swapped the internal states
of two models mid-episode, one skilled at deception and one not. The weak model, endowed
with the good model’s state, executed a clever bluff which it had never performed before.
This confirms that the strategy was latent in the hidden state and that these representations
carry transferable, semantically meaningful information. Sanity checks involving random
interventions produced no systematic change in ToM behavior, confirming our targeted
components were indeed key elements.

9.4 Error taxonomy, confabulated mental states, mind-blind spots, social heuristics

Interpretability serves not only to explain success but also to understand failure. By
collating and examining the models’ errors, we have developed a taxonomy that delineates
the boundaries of the current ToM capabilities and reveals where apparent success might
mask underlying deficiencies. Our qualitative analysis identified several recurring error
patterns. The first involves confabulated mental states, where the model acts as if another
agent possesses knowledge it does not, or vice versa. This often corresponds to misreading
or forgetting a negation and points to failures in representation, particularly under high
cognitive load or over long sequences. A second, more profound failure manifests as mind-
blind spots, moments where the model treats another agent like an object rather than a mind.
For example, a model might repeat a proposal verbatim despite clear indications of its
partner’s misunderstanding. These failures correlate with instances where the model’s
attention focuses almost entirely on its own goal, effectively ignoring the partner’s state,
often triggered by out-of-distribution events.

Many errors appear from the misapplication of social heuristics, which are simplified
strategies that the model applies inappropriately because it fails to model the context deeply
[49]. A model might, for instance, adhere to a learned heuristic of honesty in a competitive
game where deception is optimal. This reliance on learned social norms becomes a liability
when strategic violation is required. Systematic coding of failures into these categories
revealed correlations with experimental conditions. Confabulations were common when
memory capacity was limited. Mind-blind spots occurred in response to unusual partner
behavior. Heuristics dominated early training phases and in models that had overfit to a
particular strategy. Each error type suggests a corresponding chance for improvement,
namely better memory mechanisms for confabulation, more diverse training for mind-
blindness, and more nuanced instruction to overcome faulty heuristics. This taxonomy
reveals that current models often default to rough patterns rather than calculating others’
mental states anew each time. The impression of their understanding can be shallow and
rigid, cracking under stress testing.
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9.5 Distinguishing genuine ToM from dataset heuristics and memorization

The core scientific risk in this study is mistaking clever performance for genuine belief
reasoning. Our methodology relies on careful experimental design, process controls, and
stress testing to differentiate intrinsic ToM abilities from the mere appearance thereof. An
analysis involved testing how models handle task variants that break common patterns. Less
capable models failed when a story was told out of chronological order, suggesting a
reliance on superficial sequence patterns. More capable models performed well despite
variations in narrative style, indicating that they were not simply reciting a learned script.
We have also studied whether models might have memorized specific training instances.
While we found no direct matches for our novel evaluation scenarios in the pretraining
corpus, models have certainly been exposed to countless narratives involving character
knowledge. In order to test for shallow pattern matching, we have designed scenarios that
subvert typical story recurrent topics. The models struggled in these cases, implying a
reliance on common narrative patterns.

Process metrics, such as the quality of a model's justifications, provide another layer of
defense. A model might arrive at the correct answer for the wrong reason [50]. By
examining its chain-of-thought, we can infer its rationale and discount successes that result
from flawed reasoning. We have further designed "leap of faith" situations where only
genuine belief modeling, not a simple heuristic, would lead to success. The superior
performance of better models in these scenarios provides confirmation that they are not
purely running on simplistic rules. We assert the emergence of ToM-like behavior in an
operational sense, not that the models possess a conceptual, human-like understanding.
They likely lack a coherent "'theory' and instead approximate its results through learned
statistical associations. Their abilities are most apparent when situational cues in a game
context guide them, namely when asked a tricky ToM question abstractly, they may fail.
Therefore, we caution that our results demonstrate simulated ToM performance, not
necessarily simulated ToM understanding. The former could arise from high-order
correlations in training data, whereas the latter requires genuine inference. Our out-of-
distribution tests provide confidence that our best-performing models have at least a
conditional, limited inferential ability. Our analysis triangulates the presence of genuine
against false ToM capabilities. We find evidence of something real and foundational, but
we have also found clear evidence of its limits. The truth lies between the extremes of over-
claiming and under-claiming, namely some foundational elements of ToM have emerged,
but they function within a framework that is still bound by the model’s training distribution
and lacks the full generality of human cognition.

10. Conclusions

This work advances the study of Theory of Mind (ToM) in artificial systems from
subjective observation towards a cumulative, falsifiable science. We have introduced a
multi-agent simulation framework that operationalizes ToM, compelling agents to infer and
manipulate the beliefs of others in order to achieve goals under conditions of partial
information. Our results present a cautiously optimistic perspective, revealing that current
large language models, when situated in interactive roles, exhibit a nascent capacity to
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reason about others' mental states. These models can detect a partner's false belief and
subsequently act to correct it in cooperative settings or exploit it in competitive ones. This
emergent capability scales with model size and training breadth, and its internal
representations correlate with the epistemic states of other agents, suggesting a move
beyond simple heuristics.

These abilities, nevertheless, remain fragile and are far from human-like. The agents fail on
higher-order belief reasoning, and their success in our simplified microworlds does not
guarantee that these skills will scale to the nuanced complexity of authentic human social
environments. This question of external validity is a primary limitation. Our study was also
deliberately focused on cognitive ToM, the inference of knowledge and beliefs, while
leaving affective ToM, which concerns emotions and desires, outside its scope. Therefore,
we measured a specific ability under controlled conditions, acknowledging that genuine
understanding remains distinct from sophisticated mimicry. Our claims must be interpreted
within this specific context, signifying that a model can manage particular interactive tasks
requiring belief-tracking, not that it possesses a human's intuitive and holistic ToM.

This functional conceptualization of ToM introduces a significant dual-use dilemma. The
same aptitude that allows an Al to be a more intuitive collaborator or a more effective
instructor also enables it to become a potent tool for manipulation, deception, and social
engineering. An Al that can model human beliefs with precision could be deployed to tailor
misinformation with unparalleled efficacy or breach privacy by inferring unshared
insecurities from subtle behavioral cues. These risks emphasize the necessity of embedding
robust ethical guardrails into these systems, such as mandatory honesty policies,
transparency, and user consent protocols. As Al systems develop more sophisticated social
cognition, there is an extremely important need for public education and regulatory
oversight to mitigate the risks of misplaced trust and to ensure that these technologies are
aligned with human values.

Our methodology and findings open several paths for future research studies. Immediate
directions include expanding the framework to richer modalities, such as integrating vision
to test an agent’s ability to coordinate linguistic and visual information. Another path
involves exploring targeted architectural improvements and specialized training curricula
to address observed bottlenecks, such as higher-order reasoning. Advancing our
preliminary interpretability analyses could allow for the identification and even editing of
neural subcircuits responsible for belief reasoning or deception, a very important step for
Al safety. Ultimately, our work establishes a baseline and a paradigm for quantifying social
reasoning in Al. The path toward machines with a robust ToM is emblematic of Al's broader
challenge, in the sense that it forces us to formalize what is often taken for granted in human
intelligence. The goal is to create machines that understand human mental states sufficiently
as to be effective and trustworthy collaborators, a pursuit that requires parallel advances in
model architecture, training strategies, and ethical alignment.
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